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Cardinality constraint portfolio optimization problem is of popular concern in recent years in the area of 
portfolio optimization. Transaction costs such as brokerage fees make the diversification proposed by 
Markowitz not feasible in the real world. Thus there is a genie interest in solving the Cardinality 
constraint portfolio optimization problem (CCMV). 
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Introduction 
Portfolio optimization refers to the process of allocating proper weights of various assets classes to be 
held in a portfolio, in a way such that the portfolio is better than others according to certain criteria. Most 
of these criteria take both the expected return of the portfolio and the portfolio risk into consideration in 
determining the optimization objective, although there are differences among various risk measures. 
Harry Markowitz, well-known as the father of modern portfolio theory, proposed mean-variance 
framework in the 1950s.1 He stated in the model that investors generally want to maximize a portfolio's 
expected return with respect to different risk level, and the risk is defined to be the standard deviation of 
the portfolio's rate of return.  
Although the variance might not be a perfect measure for the risk (see Markowitz 1959) and there are a 
lot of revised and advanced models developed during the last decades, Markowitz's Mean-Variance 
Model laid the foundation of Modern Portfolio Theory (MPT) and nurture the widely-accepted practice in 
achieving risk-return trade off discussed above in portfolio selection process. 
One important implication of Markowitz’s framework is that investors always allocate in all risky assets 
available in the market to fully diversify away risks. This situation, however, is ideal and is only 
attainable in a frictionless world and can hardly achieved in real life due to the presence of various forms 
of market friction, such as transaction costs and management fees.2  Suck limitations motivates me to 
investigate in cardinality constrained mean-variance (CCMV) portfolio selection problem. The cardinality 
constraint here refers to the limitation in the total number of different assets in the optimal portfolio due to 
the transaction cost. In consistency with the former research community, the problem of interest of this 
project is thus to identify a small number of risky assets achieving a performance as close as possible to 
the market portfolio. 
Generalized Markowitz’s model can be formulated into the optimization problem as follows    : 

   
 

     
s.t.        
      

where                 is the expected return vector of then risky assets, Q is the covariance matrix of 
these n risky securities which is positive semi- definite,                 is portfolio weight vector,   
is the targeted return, 1 is the n-dimensional all-one vector. In this generalized portfolio optimization 
problem, the objective is to minimize portfolio risk measured by     , i.e, the variance of the portfolio 
return. There is no restriction on     implying that shorting is allowed in P. 
Putting one more constraint to limit shorting position, the Long-only portfolio optimization problem is,   : 
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By introducing an n-dimensional binary vector                  , cardinality constrained mean-
variance portfolio optimization (CCMV) is formulated as: 
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1 Markowitz, H.M. (March 1952). 
2 Gao and Li, 2013. 
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Solving problem (CCMV) with targeted return   varying from its minimum level (the return level 
corresponding to the global minimum variance portfolio) to maximum return level of the components 
yields the efficient frontier in the mean-variance plane under the cardinality constraint. 

Review of methodology used in literature 
The literature in tackling CCMV in the last two decades can be roughly classified into two categories, 
exact and heuristic algorithms. 
Reviewing the existing literature on cardinality constrained portfolio selection in last two decades; I 
summarize the two main categories of investigation methods, direct and heuristic algorithms.3 
Direct methods refer to those who directly tackle CCMV, provide possible solutions from a pure 
mathematical or theoretical angle and stay largely within optimization regime. For instance, although 
adopting different relaxation schemes, almost all exact algorithms invoke branch-and-bound algorithms to 
attain optimality. (See Jiang K, Li D, Gao J, 2014) 
Heuristic methods, on the other hand, utilize structural information from the market in the selection 
process to help choose candidate assets into the portfolio. For example, Jiang proposed a scientific-based 
heuristic algorithm that integrates factor models in finance, clustering analysis in computer science and 
mixed integer programming models in operations research to solve CCMV problem. (See Jiang K, Li D, 
Gao J, 2014) 
Heuristics appeal more to me than direct approaches at the first insight, because by incorporating financial 
analysis with structural information available in the market, heuristics such as Jiang’s method does not 
only reduces computational burden of the original optimization problem, but also yields more meaningful 
outcomes with an understanding of the financial market. 

Methodology and process 
In this paper, I will present both the heuristics and direct methods I applied in solving CCMV problem in 
the following sections. 

Investigation of market data 
I choose components stocks of Hang Sang Index as the entire asset pool for duplication purpose, although 
smaller in asset size, Hang Sang Index components are widely agreed as the benchmark of Hong Kong 
stock market.  
I got prices of Hang Sang Index component stocks from Yahoo Finance since 2000 and computed the 
expected annual return and volatility of each of 49 stocks. Here is a need to clarify the reason for 49 
rather than 50 stocks finalized in this project: to compute covariance matrix among risky assets, complete 
trading information over a continuous time window is essential. Additionally, longer the time period, 
more conceivable the covariance matrix output is and more meaningful is the result. However, the real 
situation is far from ideal. In special, 1113.HK equity possess a unusually short time period available for 
available price information. There are three common practices in solving such data problems, either 
choose the longest time window for which price information on all 50 stocks are available, or auto fill the 
missed elements in covariance matrix by linear regression or filter individual assets to get more consistent 

                                                           
3 Jiang, Li and Gao, 2014. 
 



data points. For the sake of a sufficient length of observations, I choose the third solution, i.e. not to 
include 1113.HK in the following analysis. 

 
Figure 1 Market structure 

Figure 1 shows the expected return and volatility table of each of 49 stocks over the time period. 
Correlation relationship among each stock is also shown. The color bar on the right corner represents the 
magnitude to which the corresponding stocks are related. Red color indicates relatively negative 
correlation, while green represents rather positive correlation. 

 Heuristics 
With this first understanding of the market, I start by following Jiang’s method to solve CCMV problem 
and then extend the scope by applying different factor model and various clustering algorithms. 
 
I follow Jiang’s major steps in dealing with CCMV, i.e. i) characterize different risky assets by factor 
models using market data, ii) cluster similar risky assets into groups in accordance with their loading 
coefficients in the factor model, and iii) select representative(s) within individual groups according to 
different criteria to form a portfolio. 

Factor model 

Introduction 
Luenberger introduced factor models in his famous book, investment science, to characterize risky assets.4 
Under the arbitrage pricing theory (APT), the market movement is driven by a set of different factors. In 
addition, risky asset returns are believed to be solely pinned down by a linear combination of these factors. 
Thus, loading coefficients of these factors could capture almost all the characteristics of each asset. In 
other words, market performance of that asset could be largely determined once we derive the loading 
coefficients. 
                                                           
4 Luenberger,1997. 



In this thesis, I calculate all the coefficients in various factor models introduced in the following by linear 
regression which is feasible and logical.  

Factor model across industry 
With an initial grasp of the data source and understanding about factor model, I start to examine the factor 
model across industries proposed in Jiang’s article. Specifically, Jiang  proposed to use the Hang Seng 
Composite Industrial Index as factors in their analysis, including Hang Seng Comp. Energy Index, Hang 
Seng Comp. Materials Index, Hang Seng Comp. Industrial Goods Index, Hang Seng Comp.Consumer 
Goods Index, Hang Seng Comp. Services Index,Hang Seng Comp. Telecommunications Index, Hang 
Seng Comp. Utilities Index, Hang Seng Comp. Financials Index, Hang Seng Comp. Properties & 
Construction Index, Hang Seng Comp. Information Technology Index, and Hang Seng Comp. 
conglomerates index, the total 11 factors. 
This model is believed to work well with components stocks of Hang Sang Index because of its easiness 
and meaningfulness. First, , data source of these market indexes are credible, authorized and easy to 
obtain ; second, each of the 11 indexes serves as a typical representation of the corresponding market 
industry, and such grouping across industries is definitely meaningful to consider. Based on this reasons, I 
realize this factor model on the data set and present the results below.  

 
Table 1 regression coefficients of industrial factors 



The table presents the result of applying linear regression on observations over the 15 years time window 
of stock returns with respect to industrial factor returns for each stock. Column 1 is the intercept, or alpha, 
and column 2 to 12 shows the loading coefficients of each factors. By applying the factor model across 
industries, each of 49 risky assets is transformed to an 12 = 11 + 1 dimensional vector feature space with 
the intercept and 11 factor loadings as its point coordinates. 
As XXX points out, other than statistical factors, such as industrial indexes presented above, there are two 
more kinds of factors worth to consider, namely, macroeconomic factors, such as Gross National 
Product(GNP)and unemployment rate; and traditional value factors 5, as known as fundamental factors,  
such as Price-Earnings ratio, Price-Sales ratio, Price-Book ratio and Dividend Yield.  
Hence, I incorporate Fama-French 3 factor model including a momentum factor  to develop a more 
comprehensive and reasonable characterization of risky assets. 

Fama-French factor model  
Eugene Fama and Kenneth French proposed the Fama–French three-factor model in 1993 to describe 
stock returns. 
Compared with the traditional capital asset pricing model (CAPM), which uses only one variable to 
describe the returns of individual asset or portfolio with those of the entire market, Fama and French use 
three. They added another two factors to the traditional model to reflect portfolio's return with respect to 
SMB and HML. (See Fama and French, 1993)  
The Carhart four-factor model is an extension of the Fama–French three-factor model including a 
momentum factor, also known in the industry as the MOM factor (monthly momentum).6 Momentum of a 
stock is defined as the tendency for its price to continue rising if it is going up and to continue declining if 
it is going down. 
There are a large number of studies on the explanatory ability of these four factors in Fama-French model 
in different market regions(Global, North America, Europe, Japan and Asia Pacific). Based on the decent 
results of such studies, Fama-French model are believed to have strong power in explaining stock returns. 
Thus, I commit to realize this model on the data set. 
I load factor data from the Kenneth R French: Data Library7, compare and analyze the relationships 
between returns of  Hang Sang Index component stocks and factor returns from both global market and 
from Asia Pacific excluding Japan market. Theoretically, Asian Pacific data fits my project better based 
on the fact that Hong Kong is a featured Asian Pacific financial center. In addition, Griffin points out that 
the Fama - French factors are country specific and concludes that the local factors provide a better 
explanation of time-series variation in stock returns than the global factors in his 2002 paper. To test the 
explanatory of Fama and French factors on Hang Seng index component stocks, I conduct statistical 
testing in the hoping of deriving the same result as Griffin. As expected, statistical report of regression  
further supports the notion in applying local data rather than global one by showing  a higher R square 
(0.61) than that (0.29) from global market, which implicates that  Asia Pacific excluding Japan market 
factors explain around 60% of historical performance of Hang Sang Index component stocks whereas 
global factors only explain less than 30%. Thus, Asia Pacific excluding Japan market factors data is used 
in the following analysis. 
Similar to factor model across industries, Fama–French factor model transform each of these 49 risky 
assets to a 5 (4 + 1) -dimensional vector with respect to the intercept and 4 factor loadings. 
The result of linear regression on stock returns with respect to four factors in Carhart four-factor model is 
presented. Note however, the table has 6 columns, including an extra column signifying risk free rate, 
which is needed to compute excess return. Although assuming risk free rate to be 0 does not affect the 
relative magnitude of loading coefficients, I include it in the analysis of Fama-French factor model for the 
purpose of completeness and logicality. 
                                                           
5 It refers to the fundamental factors described in the CSFB Alpha Factor Framework. 
6 Carhart, 1997. 
7 See data source 1. 



 
Figure 2 Statistical testing in Asia Pacific excluding Japan market 

 
Figure 3 Statistical testing in global market 



 
Table 2 Loading coefficients of Fama French factors 



Clustering algorithm 
Up to this point, each risky asset has been characterized into a feature vector by  factor model, next task is 
to cluster the entire asset pools into different groups based on their similarity. Degree of similarity 
between two items is defined as the negative relationship between the norm of the difference between this 
pair of feature vectors in Jiang’s paper.8The smaller the norm of the difference between a pair of feature 
vectors, the higher degree of similarity of these two assets. (See Jiang, 2014) 
  

Determination of clustering algorithms 
There are three most common clustering algorithms currently used in practice, namely partitioning 
clustering, density-based clustering and hierarchical clustering (see, e.g., Han et al. (2011)). 
  
Density-based clustering is the first to be eliminated from consideration because its unrealistic assumption 
on a uniform density distribution within genuine clusters.  
Next, I experimented both hierarchical clustering and partitioning clustering algorithm on Hang Seng 
Index component stocks to observe trend of the optimal number of groups across history and also as a 
comparison among different clustering algorithms. Optimal number of clusters is generally difficult to 
determine in clustering algorithms, as different data points possess different structure across time, even 
tiny changes in the correlation matrix may alter the cluster result a lot. It is an inevitable result since most 
partitioning algorithms such as optimization routine aim to maximize inter-cluster dissimilarity and intra-
cluster similarity. Thus, stability and consistency of number of clusters becomes significantly important in 
evaluating various clustering methods. 
 
Here are the results of comparing the following two methods: 

x Minimum number of clusters that explain at least 90% of variance 
x Hierarchical clustering tree cut at 1/3 height 

                                                           
8 Jiang, Li and Gao, 2014. 



 
 

 

Figure 4 Number of clusters by K-means 90% correlation 



 
Figure5. Number of clusters by hierarchical clustering at 1/3 height  

The figures show that with K-means analysis, the most typical and reasonable number of groups among  
Hang Seng Index component stocks is  in the range of seven to nine.  Hierarchical clustering, on the other 
hand, generates more unstable clusters across time, with the minimum at around 7 and hitting a maximum 
of nearly 25 groups, which is much more than rationale would tend to dictate. Such inconsistency and 
illegitimacy makes hierarchical clustering less favorable for this project. 

As a result, taking both the benefits and drawbacks of all these three clustering algorithms into 
consideration, combining with the fact that dimensions of the object in this project is relatively low, I 
finally chose to mainly focus on partitioning clustering algorithm  

 

Partitioning clustering 

Introduction of partitioning clustering 
Partitioning clustering, also known as flat or unnested clustering9, decomposes a data set into a set of 
disjoint clusters. Given a data set of N points, a partitioning method constructs K (N ≥ K) partitions of the 
data, with each partition representing a cluster. K-means clustering, quality threshold clustering and 
expectation maximization clustering etc. are representative algorithms for partitioned data clustering. (See 
Jing, 2011) 

                                                           
9 Jing, 2011. 



 Examples 

K-means 
The most common and well-known partitioning method is the K-means cluster analysis. Conceptually, it 
can be formulated as following steps: 

1. Selects K observations randomly and set them to be the initial centroids 
2. Assigns each data point to its closest centroid 
3. Recalculates the centroids as the average of all data points in a cluster 
4. Assigns data points to their closest centroids 
5. Continues steps 3 and 4 until observations are not reassigned or the maximum number of 

iterations is reached. 
 

FTCA 
Another clustering algorithm, the Fast Threshold Clustering Algorithm (FTCA) created by David Varadi, 
attracts me a lot for some of its desirable properties that traditional clustering algorithms do not have.  
Specifically, FTCA uses the average correlation of each asset to all other assets as an indicator of how 
closely or distantly related an asset is to the universe of assets chosen. (Varadi, 2016) the graph below 
vividly presents the logic of how FTCA creates clusters: 

 
Figure 5 FTCA clustering process 

For better understand, I also state the pseudo code for FTCA10 as follows: 
While there are assets that have not been assigned to a cluster 

If only one asset remaining then 
Add a new cluster 

                                                           
10Varadi, d. (2016). Fast Threshold Clustering Algorithm (FTCA). [online] CSSA. Available at: 
https://cssanalytics.wordpress.com/2013/11/26/fast-threshold-clustering-algorithm-ftca/ [Accessed 25 
Nov. 2016]. 



Only member is the remaining asset 
Else 

Find the asset with the Highest Average Correlation (HC) to all assets not yet been assigned to a 
Cluster 
Find the asset with the Lowest Average Correlation (LC) to all assets not yet assigned to a 
Cluster 
If Correlation between HC and LC > Threshold 

Add a new Cluster made of HC and LC 
Add to Cluster all other assets that have yet been assigned to a Cluster and  have an 
Average Correlation to HC and LC > Threshold 

Else 
Add a Cluster made of HC 

Add to Cluster all other assets that have yet been assigned to a Cluster and have 
a Correlation to HC > Threshold 

Add a Cluster made of LC 
Add to Cluster all other assets that have yet been assigned to a Cluster and have 
Correlation to LC > Threshold 

End if 
End if 
End While 

  



Now, I present the results of applying both K-means clustering and FTCA clustering methods on the 
data points.

 

Figure 6 K-means market clusters 

 
Figure 7 K-means by FTCA 



 
Figure 8 Cumulative performance time trend plot 

 
Figure 9 Average Annual Portfolio Turnover bar shart 

 First, in terms of correlation, which both clustering methods use as a measure of distance between 
points in a feature space, k-means generates a more well-distributed clusters whereas FTCA produces an 



outcome where large number of clusters contain only one individual asset.From this observation, I then 
compare the results of back-testing two investment strategies based on the clusters results suggested by 
these two algorithms to have a close-up investigation. The average annual portfolio turnover bar chart 
suggests that, portfolio turnover is much higher if investors target to maximizize Sharpe ratio, i.e. risk 
adjusted return,  compared with other strategies such as equal weight portfolio or portfolio risk (in terms 
of volatility) minimization. The cumulative performance time trend shows the differences among various 
strategies from a different angle: holding investment objective to be  the same, k-means clustering 
outperforms FTCA during most of the time window.  

Such observations guides me to focus on k-means clustering at the first stage.  By now, I how show 
the investigation process of narrowing down the choices of various clustering algorithms and how I 
finally determine to use combination of factor model with clustering algorithms.  

The following two graphs visualize the Euclidean distance by scaling multi-dimensional vectors to a 
plane. 11

 

Figure 10 Group visualization by Industral factors 

                                                           
11 See Appendix A for more information on Classical Multidimensional Scaling. 



 

Figure 11 Group visualization by Fama-French factors 

Combination with optimization procedure 
After partitioning the entire pool into k different groups by clustering algorithms, the remaining problem 
is to select representatives from each group in order to form the best portfolio that satisfies the cardinality 
constraint.(Jiang, 2011) In Jiang’s paper, “best” is defined in terms of portfolio mean and variance trade-
off. There are other measures which are sometimes considered to be even better than traditional  
Markowitz' model, such as mean-absolute deviation Portfolio Optimization and minimizing conditional 
value-at-risk of portfolio. These criteria may be applied in this project in the future, but I merely show 
mean-variance optimization results at current stage to keep consistent with the literature. 
The pre-grouping outcome of clustering algorithms empowers a large decrease in the number of possible 
combinations of candidate stocks and thus significantly relieving computational burden. Recall that the 
original CCMV problem tries to find k numbers of stocks directly from the assets universe where there 
are (  ) number of choices. In this project with n = 49 and k = 3, there are 49C3 = 18424 combinations to 
be considered! After partitioning the entire pool into k different groups, we now only need to consider 
picking the representatives within each group. More specifically, the revised problem is stated as follows: 
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Where    represents the k groups of risky assets partitioned by clustering algorithm, for instance,    represents 
the binary variables of those assets who belong to group 1,    represents the binary variables of those 
assets who belong to group 2, etc. Thus, by imposing both a lower and upper bound on the total number 
of candidate stocks that investors could pick from each group, the revised problem has only ∏ (   

 
   

    )possible options, which is much smaller than the combinatorial number (  )    
 

Direct Optimization 
With deeper understandings about both the market structure and the CCMV problem as the project goes 
by, I also devote to provide direct solutions to CCMV based on some interesting yet meaningful findings 
during the process. 

1. With long-only constraint, many of the weight elements are spontaneously tend to 0, which 
largely reduces dimensions of CCMV problem when comparing with the case when shorting is 
allowed. Thus, optimization method such as Branch and Bound are computational feasible. 

2. By carefully pick an appropriate lower and upper bound on each group, optimization can achieve 
a result where the factor model and clustering algorithm does not matter at all. 

Now, I show the result of both static and dynamic results of direct optimization and optimization 
combining with heuristics results. 
 
First, it comes to the comparison of the number of Branch and Bound methods used in various 
optimization problem.12 Intuitively, the direct optimization requires the most number of calls while the 
differences among different subset optimization problems are not severe.  
Second, each portfolio result is visualized in terms of portfolio weight allocation and number of assets 
contained in the portfolio. And here are some of the meaningful findings: 

x The number of assets contained in unconstrained portfolio decreases when the risk level increases. 
x The cardinality constraints on both direct optimization and subset optimization problems are 

effective as the maximum number assets contained in these portfolios are k. (here k is pre-defined 
to be 3) 

x Comparing results of subset optimization problems, when setting lower bound to be 0 and upper 
bound to be 1, all of the subset optimization problems have cases when none of the assets are 
selected into the portfolio, meaning that the problem has no solution. While setting the upper 
bound to be k, which is a less strict constraint, such cases are eliminated. 

                                                           
12 See Appendix B. 



 
Figure 12 Long & Short Portfolio 

 
Figure 13Long only portfolio 
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Figure 14 Cardinality optimization 

 
Figure 15 K-means by correlation 
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Figure 16 K-means Industry 

 
Figure 17 K-means Fama-French 
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Figure 18 K-means FTCA 

Third, the efficient frontier is plotted as a static comparison of portfolio performance. 
x Efficient frontier of randomly picked k(=3) assets from n (=49) assets pool are shown in gray 

curves. By repeating sufficient number of sampling of the numeration, I am confident to ensure 
the efficient frontier computed by my algorithm is generally better than other choices. [Figure 19] 

x When setting upper bound    , various subletting strategies differ from each other at different 
risk level. 

x When setting upper bound    , there is no difference among the direct cardinality 
optimization and sub setting optimization problem, and also the clustering algorithm and factor 
model does not really matter. 

x MD portfolio, which represent maximize diversification shows a special pattern among all of the 
strategies, and I would like to investigate more in the future work. 

Forth, the transformation map of various strategies help to have a better understranding about the 
portfolio structure. For example, with shorting allowed, the weight for each asset is not bounded, whereas 
when shorting is limited, many assets weights are spontaneously force to be 0. Additionally, there are 
areas remained white for subsetting optimization portfolios, implying that there are cases when none of 
the assets is selected, which is in consistant with the observations above. 
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Figure 19 Transition map Long short 

 
Figure 20Transition map Long only 
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Figure 21 transition map for subsetting optimization 

 
Figure 22 Efficient Frontier with random numeration comparison 
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Figure 23. Efficient Frontier comparison for different optimization strategies when upper bound is 1 

 
Figure 24Efficient Frontier comparison for different optimization strategies when upper bound is 3 

 Lastly, I present back testing of different strategies in comparison with equal weight portfolio as 
benchmark.  

0 1 2 3

-0
.0

5
0.

00
0.

05
0.

10
0.

15
portfolio.risk vs Return

R
et

ur
n

portfolio.risk

0001.HK
0002.HK

0003.HK 0004.HK

0005.HK

0006.HK
0011.HK

0012.HK

0016.HK 0017.HK
0019.HK

0023.HK

0027.HK

0066.HK

0083.HK

0101.HK

0135.HK

0144.HK

0151.HK0267.HK

0293.HK
0322.HK

0386.HK
0388.HK

0494.HK

0688.HK

0700.HK

0762.HK

0823.HK

0836.HK

0857.HK

0883.HK
0939.HK

0941.HK
0992.HK

1038.HK

1044.HK

1088.HK

1109.HK

1299.HK

1398.HK

1880.HK

1928.HK

2318.HK

2319.HK

2388.HK

2628.HK

3328.HK3988.HK

Universal (Long Only) Longonly
Longshort
numeration
cardinality
correlation
Industry
FF
FTCA
EW
MD

0 1 2 3

-0
.0

5
0.

00
0.

05
0.

10
0.

15

portfolio.risk vs Return

R
et

ur
n

portfolio.risk

0001.HK
0002.HK

0003.HK 0004.HK

0005.HK

0006.HK
0011.HK

0012.HK

0016.HK 0017.HK
0019.HK

0023.HK

0027.HK

0066.HK

0083.HK

0101.HK

0135.HK

0144.HK

0151.HK0267.HK

0293.HK
0322.HK

0386.HK
0388.HK

0494.HK

0688.HK

0700.HK

0762.HK

0823.HK

0836.HK

0857.HK

0883.HK
0939.HK

0941.HK
0992.HK

1038.HK

1044.HK

1088.HK

1109.HK

1299.HK

1398.HK

1880.HK

1928.HK

2318.HK

2319.HK

2388.HK

2628.HK

3328.HK3988.HK

Universal (Long Only) Longonly
Longshort
numeration
cardinality
correlation
Industry
FF
FTCA
EW
MD



EW stands for equal weight portfolio, MvLS represents the strategy to minimize portfolio variance when 
shorting is allowed, MVL is similar to MvLS but shorting is limited. max.sharpe.Cardinality refers to the 
portfolio when imposing cardinality constraints and the objective is to maximize sharpe ratio. Cor, ind, 
FF and FTCA refers to the sub setting optimization problem in terms of k-means by correlation, by 
industrial factor model, by Fama-French Factor Model and by Threshold correlation respectively. 
   

 
Figure 25Cumulative performance comparison 

  

1.0

1.5

2.0

2.5
3.0
3.5EW 1.35

MvLS 3.29
MVL 1.87
MSC 1.53
cor 0.77
Ind 0.77
FF 0.77
FTCA 0.77

C
um

ul
at

iv
e 

P
er

fo
rm

an
ce

-20

-10

0

10

20

30

4012 Month RollingEW 3.29

12
 M

on
th

 R
ol

lin
g

-30

-25

-20

-15

-10

-5

0

2011 2012 2013 2014 2015 2016 2017

EW -15.24

D
ra

w
do

w
n



Appendix A  

Simple note on Classical Multidimensional Scaling 

Multidimensional scaling takes a set of dissimilarities and returns a set of points such that the distances 
between the points are approximately equal to the dissimilarities. Following the analysis of Mardia(1978), 
a set of Euclidean distances on n points can be represented exactly in at most n - 1 dimensions and returns 
the best-fitting k-dimensional representation, where k may be less than the argument k. Here, I set k equal 
to 2 to enable a 2-D visualization of multi-dimensional vectors. More specifically, as discussed above, 
industrial factor model and Fama-French factor model characterize risky assets into 12 and 5 dimensional 
vectors respectively. Classical Multidimensional Scaling empowers visual presentation of the cluster 
results for better understanding. 

  



Appendix B 
> cardinality= portopt(ia, constraints.cardinality,50, 'Cardinality') 
173 QP calls made to solve problem with 49 binary variables using Branch&Bound  
130 QP calls made to solve problem with 49 binary variables using Branch&Bound  
121 QP calls made to solve problem with 49 binary variables using Branch&Bound  
79 QP calls made to solve problem with 49 binary variables using Branch&Bound  
133 QP calls made to solve problem with 49 binary variables using Branch&Bound  
143 QP calls made to solve problem with 49 binary variables using Branch&Bound  
169 QP calls made to solve problem with 49 binary variables using Branch&Bound  
203 QP calls made to solve problem with 49 binary variables using Branch&Bound  
331 QP calls made to solve problem with 49 binary variables using Branch&Bound  
253 QP calls made to solve problem with 49 binary variables using Branch&Bound  
219 QP calls made to solve problem with 49 binary variables using Branch&Bound  
193 QP calls made to solve problem with 49 binary variables using Branch&Bound  
190 QP calls made to solve problem with 49 binary variables using Branch&Bound  
149 QP calls made to solve problem with 49 binary variables using Branch&Bound  
127 QP calls made to solve problem with 49 binary variables using Branch&Bound  
311 QP calls made to solve problem with 49 binary variables using Branch&Bound  
201 QP calls made to solve problem with 49 binary variables using Branch&Bound  
224 QP calls made to solve problem with 49 binary variables using Branch&Bound  
168 QP calls made to solve problem with 49 binary variables using Branch&Bound  
111 QP calls made to solve problem with 49 binary variables using Branch&Bound  
11 QP calls made to solve problem with 49 binary variables using Branch&Bound  
11 QP calls made to solve problem with 49 binary variables using Branch&Bound  
9 QP calls made to solve problem with 49 binary variables using Branch&Bound  
81 QP calls made to solve problem with 49 binary variables using Branch&Bound  
83 QP calls made to solve problem with 49 binary variables using Branch&Bound  
89 QP calls made to solve problem with 49 binary variables using Branch&Bound  
85 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
87 QP calls made to solve problem with 49 binary variables using Branch&Bound  
93 QP calls made to solve problem with 49 binary variables using Branch&Bound  
97 QP calls made to solve problem with 49 binary variables using Branch&Bound  
105 QP calls made to solve problem with 49 binary variables using Branch&Bound  
67 QP calls made to solve problem with 49 binary variables using Branch&Bound  
61 QP calls made to solve problem with 49 binary variables using Branch&Bound  
145 QP calls made to solve problem with 49 binary variables using Branch&Bound  
45 QP calls made to solve problem with 49 binary variables using Branch&Bound  
45 QP calls made to solve problem with 49 binary variables using Branch&Bound  
37 QP calls made to solve problem with 49 binary variables using Branch&Bound  
33 QP calls made to solve problem with 49 binary variables using Branch&Bound  
33 QP calls made to solve problem with 49 binary variables using Branch&Bound  
3 QP calls made to solve problem with 49 binary variables using Branch&Bound  
3 QP calls made to solve problem with 49 binary variables using Branch&Bound  
1 QP calls made to solve problem with 49 binary variables using Branch&Bound  
1 QP calls made to solve problem with 49 binary variables using Branch&Bound  



 
 
 
>  
> w0 = portopt(ia,constraints.cluster.cor.90, 50, 'k-means.cor') 
155 QP calls made to solve problem with 49 binary variables using Branch&Bound  
119 QP calls made to solve problem with 49 binary variables using Branch&Bound  
75 QP calls made to solve problem with 49 binary variables using Branch&Bound  
109 QP calls made to solve problem with 49 binary variables using Branch&Bound  
135 QP calls made to solve problem with 49 binary variables using Branch&Bound  
149 QP calls made to solve problem with 49 binary variables using Branch&Bound  
171 QP calls made to solve problem with 49 binary variables using Branch&Bound  
229 QP calls made to solve problem with 49 binary variables using Branch&Bound  
223 QP calls made to solve problem with 49 binary variables using Branch&Bound  
243 QP calls made to solve problem with 49 binary variables using Branch&Bound  
185 QP calls made to solve problem with 49 binary variables using Branch&Bound  
149 QP calls made to solve problem with 49 binary variables using Branch&Bound  
57 QP calls made to solve problem with 49 binary variables using Branch&Bound  
145 QP calls made to solve problem with 49 binary variables using Branch&Bound  
93 QP calls made to solve problem with 49 binary variables using Branch&Bound  
39 QP calls made to solve problem with 49 binary variables using Branch&Bound  
33 QP calls made to solve problem with 49 binary variables using Branch&Bound  
113 QP calls made to solve problem with 49 binary variables using Branch&Bound  
131 QP calls made to solve problem with 49 binary variables using Branch&Bound  
121 QP calls made to solve problem with 49 binary variables using Branch&Bound  
107 QP calls made to solve problem with 49 binary variables using Branch&Bound  
69 QP calls made to solve problem with 49 binary variables using Branch&Bound  
81 QP calls made to solve problem with 49 binary variables using Branch&Bound  
75 QP calls made to solve problem with 49 binary variables using Branch&Bound  
75 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
85 QP calls made to solve problem with 49 binary variables using Branch&Bound  
85 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
85 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
87 QP calls made to solve problem with 49 binary variables using Branch&Bound  
97 QP calls made to solve problem with 49 binary variables using Branch&Bound  
77 QP calls made to solve problem with 49 binary variables using Branch&Bound  
77 QP calls made to solve problem with 49 binary variables using Branch&Bound  
17 QP calls made to solve problem with 49 binary variables using Branch&Bound  
37 QP calls made to solve problem with 49 binary variables using Branch&Bound  
71 QP calls made to solve problem with 49 binary variables using Branch&Bound  
41 QP calls made to solve problem with 49 binary variables using Branch&Bound  
41 QP calls made to solve problem with 49 binary variables using Branch&Bound  
37 QP calls made to solve problem with 49 binary variables using Branch&Bound  
27 QP calls made to solve problem with 49 binary variables using Branch&Bound  
29 QP calls made to solve problem with 49 binary variables using Branch&Bound  



3 QP calls made to solve problem with 49 binary variables using Branch&Bound  
3 QP calls made to solve problem with 49 binary variables using Branch&Bound  
3 QP calls made to solve problem with 49 binary variables using Branch&Bound 
 
> w1 = portopt(ia,constraints.cluster.Industry, 50, 'k-means.Industry') 
155 QP calls made to solve problem with 49 binary variables using Branch&Bound  
119 QP calls made to solve problem with 49 binary variables using Branch&Bound  
75 QP calls made to solve problem with 49 binary variables using Branch&Bound  
109 QP calls made to solve problem with 49 binary variables using Branch&Bound  
135 QP calls made to solve problem with 49 binary variables using Branch&Bound  
149 QP calls made to solve problem with 49 binary variables using Branch&Bound  
171 QP calls made to solve problem with 49 binary variables using Branch&Bound  
229 QP calls made to solve problem with 49 binary variables using Branch&Bound  
223 QP calls made to solve problem with 49 binary variables using Branch&Bound  
243 QP calls made to solve problem with 49 binary variables using Branch&Bound  
239 QP calls made to solve problem with 49 binary variables using Branch&Bound  
149 QP calls made to solve problem with 49 binary variables using Branch&Bound  
175 QP calls made to solve problem with 49 binary variables using Branch&Bound  
145 QP calls made to solve problem with 49 binary variables using Branch&Bound  
93 QP calls made to solve problem with 49 binary variables using Branch&Bound  
47 QP calls made to solve problem with 49 binary variables using Branch&Bound  
324 QP calls made to solve problem with 49 binary variables using Branch&Bound  
113 QP calls made to solve problem with 49 binary variables using Branch&Bound  
176 QP calls made to solve problem with 49 binary variables using Branch&Bound  
121 QP calls made to solve problem with 49 binary variables using Branch&Bound  
107 QP calls made to solve problem with 49 binary variables using Branch&Bound  
105 QP calls made to solve problem with 49 binary variables using Branch&Bound  
81 QP calls made to solve problem with 49 binary variables using Branch&Bound  
75 QP calls made to solve problem with 49 binary variables using Branch&Bound  
75 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
85 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
87 QP calls made to solve problem with 49 binary variables using Branch&Bound  
97 QP calls made to solve problem with 49 binary variables using Branch&Bound  
77 QP calls made to solve problem with 49 binary variables using Branch&Bound  
77 QP calls made to solve problem with 49 binary variables using Branch&Bound  
17 QP calls made to solve problem with 49 binary variables using Branch&Bound  
37 QP calls made to solve problem with 49 binary variables using Branch&Bound  
71 QP calls made to solve problem with 49 binary variables using Branch&Bound  
41 QP calls made to solve problem with 49 binary variables using Branch&Bound  
41 QP calls made to solve problem with 49 binary variables using Branch&Bound  
37 QP calls made to solve problem with 49 binary variables using Branch&Bound  
27 QP calls made to solve problem with 49 binary variables using Branch&Bound  
29 QP calls made to solve problem with 49 binary variables using Branch&Bound  



3 QP calls made to solve problem with 49 binary variables using Branch&Bound  
3 QP calls made to solve problem with 49 binary variables using Branch&Bound  
3 QP calls made to solve problem with 49 binary variables using Branch&Bound  
 
 
 
> w2 = portopt(ia,constraints.cluster.FF, 50, 'k-means.FF') 
155 QP calls made to solve problem with 49 binary variables using Branch&Bound  
119 QP calls made to solve problem with 49 binary variables using Branch&Bound  
75 QP calls made to solve problem with 49 binary variables using Branch&Bound  
109 QP calls made to solve problem with 49 binary variables using Branch&Bound  
135 QP calls made to solve problem with 49 binary variables using Branch&Bound  
149 QP calls made to solve problem with 49 binary variables using Branch&Bound  
171 QP calls made to solve problem with 49 binary variables using Branch&Bound  
229 QP calls made to solve problem with 49 binary variables using Branch&Bound  
223 QP calls made to solve problem with 49 binary variables using Branch&Bound  
243 QP calls made to solve problem with 49 binary variables using Branch&Bound  
185 QP calls made to solve problem with 49 binary variables using Branch&Bound  
149 QP calls made to solve problem with 49 binary variables using Branch&Bound  
57 QP calls made to solve problem with 49 binary variables using Branch&Bound  
145 QP calls made to solve problem with 49 binary variables using Branch&Bound  
93 QP calls made to solve problem with 49 binary variables using Branch&Bound  
39 QP calls made to solve problem with 49 binary variables using Branch&Bound  
33 QP calls made to solve problem with 49 binary variables using Branch&Bound  
113 QP calls made to solve problem with 49 binary variables using Branch&Bound  
131 QP calls made to solve problem with 49 binary variables using Branch&Bound  
121 QP calls made to solve problem with 49 binary variables using Branch&Bound  
107 QP calls made to solve problem with 49 binary variables using Branch&Bound  
69 QP calls made to solve problem with 49 binary variables using Branch&Bound  
81 QP calls made to solve problem with 49 binary variables using Branch&Bound  
75 QP calls made to solve problem with 49 binary variables using Branch&Bound  
75 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
85 QP calls made to solve problem with 49 binary variables using Branch&Bound  
85 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
85 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
87 QP calls made to solve problem with 49 binary variables using Branch&Bound  
97 QP calls made to solve problem with 49 binary variables using Branch&Bound  
77 QP calls made to solve problem with 49 binary variables using Branch&Bound  
77 QP calls made to solve problem with 49 binary variables using Branch&Bound  
17 QP calls made to solve problem with 49 binary variables using Branch&Bound  
37 QP calls made to solve problem with 49 binary variables using Branch&Bound  
71 QP calls made to solve problem with 49 binary variables using Branch&Bound  
41 QP calls made to solve problem with 49 binary variables using Branch&Bound  
41 QP calls made to solve problem with 49 binary variables using Branch&Bound  
37 QP calls made to solve problem with 49 binary variables using Branch&Bound  



27 QP calls made to solve problem with 49 binary variables using Branch&Bound  
29 QP calls made to solve problem with 49 binary variables using Branch&Bound  
3 QP calls made to solve problem with 49 binary variables using Branch&Bound  
3 QP calls made to solve problem with 49 binary variables using Branch&Bound  
3 QP calls made to solve problem with 49 binary variables using Branch&Bound  
 
w3 = portopt(ia,constraints.cluster.FTCA, 50, 'FTCA') 
155 QP calls made to solve problem with 49 binary variables using Branch&Bound  
119 QP calls made to solve problem with 49 binary variables using Branch&Bound  
75 QP calls made to solve problem with 49 binary variables using Branch&Bound  
109 QP calls made to solve problem with 49 binary variables using Branch&Bound  
135 QP calls made to solve problem with 49 binary variables using Branch&Bound  
149 QP calls made to solve problem with 49 binary variables using Branch&Bound  
171 QP calls made to solve problem with 49 binary variables using Branch&Bound  
229 QP calls made to solve problem with 49 binary variables using Branch&Bound  
223 QP calls made to solve problem with 49 binary variables using Branch&Bound  
243 QP calls made to solve problem with 49 binary variables using Branch&Bound  
185 QP calls made to solve problem with 49 binary variables using Branch&Bound  
149 QP calls made to solve problem with 49 binary variables using Branch&Bound  
57 QP calls made to solve problem with 49 binary variables using Branch&Bound  
145 QP calls made to solve problem with 49 binary variables using Branch&Bound  
93 QP calls made to solve problem with 49 binary variables using Branch&Bound  
39 QP calls made to solve problem with 49 binary variables using Branch&Bound  
33 QP calls made to solve problem with 49 binary variables using Branch&Bound  
113 QP calls made to solve problem with 49 binary variables using Branch&Bound  
131 QP calls made to solve problem with 49 binary variables using Branch&Bound  
121 QP calls made to solve problem with 49 binary variables using Branch&Bound  
107 QP calls made to solve problem with 49 binary variables using Branch&Bound  
69 QP calls made to solve problem with 49 binary variables using Branch&Bound  
81 QP calls made to solve problem with 49 binary variables using Branch&Bound  
75 QP calls made to solve problem with 49 binary variables using Branch&Bound  
75 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
85 QP calls made to solve problem with 49 binary variables using Branch&Bound  
85 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
85 QP calls made to solve problem with 49 binary variables using Branch&Bound  
95 QP calls made to solve problem with 49 binary variables using Branch&Bound  
87 QP calls made to solve problem with 49 binary variables using Branch&Bound  
97 QP calls made to solve problem with 49 binary variables using Branch&Bound  
77 QP calls made to solve problem with 49 binary variables using Branch&Bound  
77 QP calls made to solve problem with 49 binary variables using Branch&Bound  
17 QP calls made to solve problem with 49 binary variables using Branch&Bound  
37 QP calls made to solve problem with 49 binary variables using Branch&Bound  
71 QP calls made to solve problem with 49 binary variables using Branch&Bound  
41 QP calls made to solve problem with 49 binary variables using Branch&Bound  
41 QP calls made to solve problem with 49 binary variables using Branch&Bound  
37 QP calls made to solve problem with 49 binary variables using Branch&Bound  



27 QP calls made to solve problem with 49 binary variables using Branch&Bound  
29 QP calls made to solve problem with 49 binary variables using Branch&Bound  
3 QP calls made to solve problem with 49 binary variables using Branch&Bound  
3 QP calls made to solve problem with 49 binary variables using Branch&Bound  
3 QP calls made to solve problem with 49 binary variables using Branch&Bound 
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Data source 
1. Fama French factors, http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
2. Hang Seng Index component stocks 

https://finance.yahoo.com/quote/%5EHSI/components?p=%5EHSI 
3. Complementary data, such as risk free rate 

http://thomsonreuters.com/en.html 
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