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Abstract

A direct application of traditional Markowitz portfolio selection theory is problematic,
especially for individual investors with small amount of initial capital available because
of the unrealistic assumptions in the classical model. Existence of transaction costs in
the form of bank and broker fees in reality forces investors to include only a rather small
selection of assets in their portfolios which is in the form of cardinality constraint portfolio
optimization problem.

Given the facts that previous efforts paid mainly on putting side constraints such as
turnover constraints or number of trades limits constraints, few of the existing methods could
guarantee an optimal solution to a dynamic Cardinality Constrained Portfolio Optimization
Problem with Transaction Costs. In addition, since static general CCMV problems are
already solved for a single time period in my previous work, I was motivated to investigate
on re-balancing (dynamic) CCMYV problems incorporated with transaction costs problem
particularly in this semester.

In this thesis, I present the formulation based on the Markowitz MV model for rebalancing
an existing portfolio subject to both cardinality and transaction costs constraints. I determine
and demonstrate modellings of both fixed and linear transaction cost types which are the
most common practices in the real world. I compare and contrast the effects of various
constraints on the portfolio performance and derive the underlying implications and deep
principles not only for such Dynamic Cardinality Constrained Portfolio Optimization with
fixed and linear Transaction Costs models, but also applicable for the majority of portfolio

optimization problems in general.
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Chapter 1

Introduction

1.1 Thesis Structure

The paper is organized as follows. In this chapter, I first introduce the thesis structure and the
problem of interest of this project, followed by review of works that have been done in the
previous semester and then point out the road-map for new semester.

In Chapter 2, I present a literature review of the history of portfolio optimization prac-
tices with particular focus on works involving cardinality constraints and transaction costs
constraints. Moreover, the review is dynamic-rebalancing focused in the aim of reviewing
how scholars have been tackling with portfolio re-balancing problems.

Chapter 3 1s the detailed model formulation and is the main body of this thesis . Specif-
ically, I first explain the model setup in detail and then build up the objective function.
Detailed explanations of each of the constraint that appears in the model are given in the next.
After that, I point out several straightforward facts underlying the model structure and analyse
relaxation conditions to release computational burden and improve practicability. In the last
part of this chapter, 1 give completes formulation of the dynamic cardinality constrained
portfolio optimization model with fixed and linear transaction costs.

I present the results of applications of my models on the chosen data sets in Chapter
4. In detail, various portfolios are compared with each other in terms of both static and
dynamic performances. I present graphical illustrations of the efficient frontiers for the static
performance and rolling monetary value of the portfolio for dynamic performance. After
these, various investment strategies are computed to carry out the sensitivity analyses on
different parameter settings and to study effects of one or some of the constraints.

Chapter 5 is a conclusion of the thesis presenting a summary of the thesis, advances of the
model, potential deficiency and future directions. In addition, I explained other applications

of the model and my contribution to knowledge.
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1.2 Problem Review

In this final year project, I have been particularly interested in solving the Cardinality
Constrained Portfolio Selection problem. Based on Markowitz’s Mean Variance Portfolio
Optimization framework, investors would always allocate in as many as risky assets available
in the market to fully diversify away risks. This solution to Markowitz’s Mean Variance
Model (MV model), however, is usually unachievable in real world due to various unrealistic
assumptions.

First, Mean Variance model assumes an ideal market with no frictions, such as transaction
costs or management fees. This, however, is more or less violated in the real world. In the
past decades, brokers make money on commissions and fees no matter the gains or losses
sustained by individual traders. Such transaction costs or management fees, which are out of
consideration in MV model are exactly a serious issue in real life. A direct application of
the classical portfolio selection theory is more problematic for small investors as the large
amount of transaction fees would eat up some or even all of their capitals. [1] They are hence
in favorable to include a comparatively rather small number of assets in their portfolio. We
give a graphic proof of this statement in Chapter 4.

Second, shorting is not allowed in this original model, allocation on each asset could be
non-negative only. [14] Situation is much more complex in real world. Despite the heavy
scrutiny felled on short selling in many countries, especially after the global financial crisis
in 2007-2008, shorting is still allowed in many countries, usually with a higher short selling
cost however.

As a result, such unrealistic limitations on the original model have motivated a number
of scholars to investigate on cardinality constrained mean-variance portfolio selection
(CCMYV) problem. The results of studies on the diversification effect of portfolio size!
further strengthen the importance of CCMV problem: decrease in portfolio risk due to the
increase of portfolio size would diminishing once it has achieved a certain level, according to
Elton and Gruber’s research paper. In one word, it is both important and meaningful to solve
the cardinality constrained mean-variance portfolio selection (CCMYV) problem.

1.3 Previous Achievements

In the previous semester, after a wide range review of previous studies on cardinality con-
strained portfolio optimisation problem, I was dedicated to develop a scientific-based heuristic

algorithm that integrates factor models in finance, clustering analysis in computer science

I'See section 3.2.3 for more detailed elaboration of the study results.
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and mixed integer programming models in operations research to solve CCMV problem
based on Jiang’s [4] proposal. To this end, various market analyses were carried out to find
the most appropriate number of clusters for different markets. In addition, particular attention
was paid on establishing a muti-factoe regression model by analysing the potential various
factors that are highly correlated to asset returns. I then group highly correlated risky assets
based on their factor loadings in linear regression model and solve the CCMV problem by

heuristics.

In more detail, I first evaluated Jiang’s algorithm in achieving feasibility and optimality by
implementing the factor model suggested in the paper using the same data set in Hong Kong
market and concluded the conditions where such heuristics would deliver correct solution
as the direct methods within certain confidence level. I then build up original models with
various combinations of analyses on factors such as industrial factors, extended Fama-French
4 factors and Buffet’s six factors with three clustering algorithms. Such models have never
appeared in former literature and is a complete original work. After that, further assessments
of the models were conducted by out-of-sample backtests in comparison with the benchmark

strategy.

1.4 Road-map for new efforts

During the process of deeper and further investigation of the problem, I realize the genuine
need for constructing a cardinality constraint for portfolio optimization problem lies in the
existence of transaction fees. As a result, I was passionate about injecting the transaction

costs into the original CCMV model.

With the former effort in solving static CCMV solutions, the model was able to give a
static solution given independent data input. However, the optimization problem in real life
is much more complex in the sense that investors usually hold a portfolio for a long period of
investment horizon, frequently check their portfolio and adjust accordingly. Thus, a dynamic
CCMYV re-balancing model is more applicable for the reality.

Mathematically, this is a problem involving much more complexity. Now, each optimal
solution becomes a random variable and is dependent on the existing, or current, portfolio.
The stock positions in current portfolio has at least some decision power, if not all , on the
optimal portfolio to be hold in the next time period, especially for the frictional market.
Intuitively, if the CCMV model gives a mean-variance optimal solution with totally different
stocks positions, namely, clear all of the current positions and open all new positions, which

means 200% turnover for the entire portfolio. The cost related to this trade activity is
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tremendously high. Hence we have to balance the costs and benefits in rebalancing portfolio:
to decide whether, when and how to rebalance.

To these ends, I have planned to do and indeed have completed the following:

* Develop and apply a more generalized and sensible factor model in the sense that the

specific returns are more white and could better predict the return.

* Modify sample covariance measure into Ledoit-wolf shrinkage covariance measure to

derive a more stable and computable covariance matrix.
« Establish a dynamic portfolio optimization model for rebalancing management. 2

* Injecting transaction costs into portfolio optimization model to consider a net in
transaction cost portfolio return. 3

* Combine and test different optimization models and evaluate their performances by
putting more realistic objective functions and bounding constraints to improve both

the efficiency, feasibility and profitability of the portfolio optimization. *

2See Chapter 3
3See Chapter 3
4See Chapter 4



Chapter 2
Literature Review

In this Chapter, we would give a review of previous studies on portfolio re-balancing problems

with cardinality constraints and transaction cost constraints.

2.1 Cardinality Constrained Portfolio Optimisation

Work on cardinality constraints mean variance model in the last two decades can be generally
classified into two categories, namely, direct and heuristic algorithms.

Direct methods refer to scholars who directly tackle the problem, provide possible
solutions from mainly pure mathematical or theoretical angle. Heuristic methods, on the
other hand, rely on "domain knowledge from a particular application, that gives guidance in
the solution of a problem" (Oxford Dictionary of Computing, 1996). Please refer to Reeves
[9] for more information about heuristic.

While Li, Sun, and Wang (2006) [5] and a few others assumed a concave transaction
costs function to find an exact solution for cardinality-constrained mean-variance problem by
applying convergent Lagrangian methods assuming concave transaction costs function, the
majority of the research community focusing on heuristic algorithms. For example, Crama
and Schyns (2003)[2] implemented simulated annealing Algorithms in the aim of solving
complex portfolio selection models with cardinality constraints. To get feasible solutions,
they also put side constraints such as turnover constraints to limit the number of trades.
Jiang et al (2014) [4] applied a scientific-based heuristic algorithm which integrates factor
models in finance, clustering analysis in computer science and mixed integer programming
models in operations research to solve CCMV problem. Specific interests were put on this
smart proposal in the last semester since it offered such a unique and intelligent approach to
solving CCMYV problem by eliminating the original cardinality constraint in their mortified

model. Diligent examination on this approach is given in the previous section (See section
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1.3) Soleimani et al (2009) [11] grouped various assets into different sectors and established
a sector-grouped model with weight constraints in each sector to solve the cardinality
constrained problem by genetic algorithm.

2.2 Portfolio optimization with Transaction Cost

Transaction costs, simply put, are additional expenses incurred in order to make the trans-
action done. In financial world, transaction costs usually include brokers’ commissions,
various fees and spreads '. While these transaction costs are major profits banks and brokers
receive for their roles, they are a considerable amount of payments for investors and should
never be sniffed at. Transaction costs are so important because they are one of the key
determinants of net returns, which also explains the large gap between net return in real life
against the theoretical frictionless return in Mean Variance model. Transaction costs diminish
returns, and over time, high transaction costs can mean thousands of dollars lost from not
just the costs themselves but also because the costs reduce the capital available for future

investment.[ 8]

In the academic arena, usually two types of transaction cost function have been considered:
fixed and linear transaction cost. Satchell [10] gave three common alternative transaction cost
models which are shown figure 2.1 in including a linear cost model with a fixed marginal rate
(Model 1 in the figure), a linear cost model with a fixed hurdle rate for making the purchase
(Model 2) and models in higher orders (Model 3 in the figure is a quadratic one).

While the globally optimal portfolio can be computed rather rapidly for linear transaction
costs, it is a different story for the fixed costs. Miguel Sousa Lobo et al (2007) [7] considered
portfolio selection problem, with transaction costs constraints and constraints on exposure
to risk. They developed a relaxation method which computes an upper bound via convex
optimization and derived suboptimal solutions for fixed transaction costs function model.
Baule [1] assumes a non-convex transaction cost function and considers a model with a
trade-off between transaction costs and risk costs for different levels of invested wealth. They
analyze the reformulated optimization problem with an objective function as a minimization
of the sum of two types of costs and conclude that transaction costs can lead to a rather small

optimum for the number of stocks in the portfolio, especially for small investors.

IThe differences between the price the dealer paid for a security and the price the buyer pays.
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Fig. 2.1 Common Transaction Cost Models

2.3 Summary

This chapter gave a glimpse of previous researches on portfolio optimization problem with
particular attention on the cardinality constraint, transaction cost constraint with a dynamic
re-balancing viewpoint. As a result of the literature review above, there are several findings
and considerations.

I noticed that several ways, either by clustering algorithm or injecting appropriate transac-
tion cost constraints could eliminate the cardinality constraints in CCMV problem, to achieve
the same desired solution with only a small number of stocks in the optimal portfolio.

There are a bunch of benefits of these side constraints. To name a few, it may help solve the
CCMYV, which is NP-hard, in a more fast and efficient way. Also, it increases computational
feasibility and facilitates efficiency, saves computational time and thus increasing solution
speed. This is especially important for financial industry, where the saying of “time is money”
cannot be more true. However, these benefits do come at costs. The biggest problem is that
the cardinality number K is not fixed. Although side constraints such as turnover constraints
could limit the portfolio size to be a small number, but that is not stable but changes from
time to time. For example, consider a portfolio without cardinality constraint but only with
transaction cost constraints, there may be 5 stocks in the portfolio at the current time point,
but 6 in the previous, and may be 4 in the coming investment period, which is still a large
and important gap between the original CCMV solution.






Chapter 3
Model Formulation

Reflection on results of work in the last semester guided me to conclude that if we are able to
build up a better formulated optimization problem model to the degree where the auxiliary
multi-factor model does not change the solution a lot then the problem would be solved in a

more artistic, concise and efficient way.

This insight motivates me to investigate on re-balancing (dynamic) CCMV problems
incorporate with transaction costs. This is different compared with the focus in the previous
work. To elaborate , recall that full attention was focused on finding the static cardinality
solution within each time period. Either conducting market analysis to find the most appro-
priate number of clusters for different markets or establishing various factors, building up
multi-factor models and then grouping highly correlated risky assets based on their factor
loadings in linear regression model could solves the CCMV problem once only. In other
words, any time investors want to rebalance their portfolios, the procedures mentioned above

have to repeat again and again, which is obviously inefficient.

However, it would be another story if the new re-balancing (dynamic) CCMV problems
incorporate with transaction costs could be successfully modelled. Solutions would be
updated automatically suggesting investors whether, when and how to trade by considering
the costs and benefits of the potential transaction behaviours. In brief, it was a static solution
in the last semester while a dynamic and updated model in this paper.

Given that there exists no exact re-balancing (dynamic) solutions to CCMV with trans-
action costs problems according to the literature review, the whole modified CCMV net in
transaction costs effect models that are going to be illustrated in this chapter is originally

developed and totally brand-new.
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3.1 Model Setup and objective function

Refer to the list of Symbols at the beginning of the paper for a complete collection of symbols
and notations that used throughout the thesis.

Suppose that an investor with initial wealth Wy selects K risky securities from an in-
vestment universe consisting of N risky assets for constructing a portfolio at time point
T = 0 and hold it over a fixed time period. The investor then choose to reallocate his or her
posterior wealth at the beginning of each of the following T — 1 re-balancing time points by
performing a number of transactions to adjust the weight proportions invested in each risky
assets while satisfying a set of constraints on the portfolio which are going to be explained in
details in the following sections. The investor’s goal is to minimize portfolio risk in terms of
“mean-variance” framework within each time period.

More precisely, the objective function is

N N

Jninimise ,; ]; O1,ijWe,iWr, j

On one hand, the quadratic risk objective function is in consistent with the original
Markowitz model in the sense of minimizing the summation of the covariance matrix entries
multiplied by the weight proportion to be allocated in each risky asseti (i = 1,...,N). On the
other hand, there are tiny yet important differences. Notice here in the set up the posterior
wealth v; is updated by subtracting the total transaction costs incurred in the process of
moving from current portfolio holdings X; to the new portfolio solution x; and that is different
from the anterior wealth V;. The detailed mathematical equation for weight vectors are given
in the sections below.

3.2 Constraints

In this section, I give detailed explanations of each constraint imposed on the portfolio. Since
logic and procedure are the same for each rebalancing period, I would focus on a single time
portfolio selection problem at time ¢ in this explanation and then back to the dynamic model

in full model formulation section.

3.2.1 Targeted return constraints

N
Y tiwii=R 3.1
i=1
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The return equation says that the expected portfolio return is a weighted sum of expected
returns of assets currently hold in the portfolio since weight vector has non-zero entries for

assets are currently in the portfolio only and zero otherwise. See equation 3.16.

3.2.2 Balance on shares
xl,i:Xl,i+tt,i7 1= 1,...,N (32)

The number of shares to hold on asset i in the new portfolio should equal to the sum of the
current holdings of the same risky asset plus the corresponding trading amount of shares,
where one of the decision variables #; ; denotes the trading vector or transaction amounts.

Positive #; ; represents the units to buy while negative denotes the amounts to sell.

3.2.3 Cardinality constraints

N
Y ai=K (3.3)

This equation limits the total number of positions open in the portfolio to be integer K, which
is given by the investor.

Elton and Gruber [3] had published some interesting findings on the number of portfolio
size, which is briefly explained in the following. Figure 3.1 highlights the relationship
between number of securities holdings in the portfolio and portfolio total risk. It is clear to
observe that the portfolio risk goes down as the portfolio size increases, however, the benefits
of diversification diminishes. Noticing that total risk of the portfolio in the last column
never goes to zero but converges to a stable level of at around 7.100, which represents the
non-systematic risk that can not be diversified anyway.

The effect of diversification, namely, holding more types of uncorrelated risky assets, is
better presented in chart 3.2: when there are only one asset in the portfolio, holding one more
could reduce nearly half of the original risk, three more to reduce around two-thirds, so and
so force, but the benefits of holding a bigger portfolio decline rapidly after n=30.

Thus, the choice of an appropriate K for the number of risky assets in the portfolio is a
combination of art and science. For one thing, investors could choose to trust the market
and and pick the number according to the number of low-correlated assets groups based on
clustering analyses as what I had done in the last semester. For another, since fewer asset
classes in a portfolio implying more expected alpha and more idiosyncratic risk whereas a
larger portfolio size generally lowers the portfolio risk and return simultaneously through

diversification , it largely depends on the investor’s risk attitudes.
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Table §
Effect of Diversification
Expected
Number of Portfolio Variance in Total
Securities Variance Variance Risk
Yousmenss 46.619 1,411.041 46.811
T R 26.839 201.963 26.934
R SR 16.948 31.553 16.996
6.. ... ... 13.651 11, 184 13.683
12.003 5.477 12.027
L0 o 11.014 3.186 11.033
W 9.036 623 9.045
0. ... .. 7.849 Q75 7 853
1| FOR— 7.453 .013 7.455
200 ey 7.255 001 7.256
SO00: i 7.137 000 7.137
1,000.......... 7.097 .000 7.097
Minimum. ..., 7.070 .000 7.070

Nore.—Parameters based on 3,290 securities values shownintahble S.

Fig. 3.1 Effect of Diversification

3.2.4 Position change constraints

This model grants even more freedom for investors to build their very customized portfolio as
they are able to further specify the number of changes in positions they want for the portfolio
and this is formulated as:

N
Z |at,i —At,i| =A (3.4)
i=1

where
A=0,2,4,...,2K 3.5)

The desired level of position changes A is an integer explicitly pointed out by the investor
prior to the whole investment horizon. Due to its practical context, A could only be even
numbers ranging from 0 to twice of the total number of risky assets included in the portfolio
with the assumption that the desired number of assets hold in the portfolio K is much smaller
than N/2. A could not be odd integers in the aim of maintaining the cardinality constraint
simultaneously. If one decides to close one of he position in the current portfolio, he must
also open a new one from those which are not in the portfolio , in other words, the portfolio
size changes.

Here is an illustration example for better understanding. Consider a simple portfolio with
risky assets universe N = 6 including AAPL, BA, GM, IBM, DD and GOOG. The desired

portfolio size chosen by an individual investor is K = 4. Figure 3.3 gives a comparison
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Elton & Gruber: Risk Reduction & Portfolio Size
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Fig. 3.2 Risk reduction and portfolio size

between current and new portfolio weight vectors at a specific rebalancing time point ¢. These
numbers are randomly computed only for illustration purpose but entries of these two weight
vectors sum up to one, satisfying the fully invested constraint. Observing the model suggests
the investor to open a new position for AAPL and sell out all of his or her GOOG holdings
to close the position, while maintaining positions on all of the other risky assets. All of the
other stocks would involve non-significant transactions: either buying more units of current
holding positions, selling less than current holdings shares or simply keeping unchanged.
The key point here, however, is that there are only 2 position changes, namely, open AAPL
and close GM. This piece of information is of particular importance for computing fixed
transaction costs which would be fully explained later. To this end, we introduce two binary
vectors a; ; and A, ; to denote whether asset i is included in the current portfolio or not and
whether it is to be included in the new portfolio at time point ¢ or not respectively. Hence, the
situation in this example could be summarized by the current and new position index given
in table 3.1. Noticing that the sum of the two rows equal to 4, which satisfies the cardinality

constraint and LHS of the position change constraint (see equation 3.4) equals to 2. !

! Taking the second row of “new position index" minus that of the “current position index", take absolute
value of each entry and then take the summation, you will get the same answer.
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Position Change illustration
40
W current

35 B new

35
30
30

25

15

w
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AAPL BA DD GM GOOG IBM AAPL BA DD GM GOOG IBM

Fig. 3.3 llustration Example: Current and new holding positions in a simple portfolio

Table 3.1 Example to illustrate how position change constraint works

position index AAPL BA GM IBM DD GOOG
current position index 0 1 0 1 1 1
new position index 1 1 0 0 1 1
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Up to this point, the logic behind this position change constraint is rather clear and range
of possible values of A is also self-explainable. More specifically, there are two extreme
cases along the spectrum. A = 0 means that the investor wants no position changes from the
current portfolio to the new one , in other words, he or she would neither open new positions
nor close any but only fine-tuning the current holdings in the portfolio in the sense of either
buying more shares of stocks which are already in the portfolio or sell some but not all of
the shares for some asset i. While A = 2K represents the most rapid change of portfolio
positions: the investor would sell out all of his or her current holdings of all the stocks now in
the portfolio and considers to buy only new ones that are not in the portfolio, which implies a
rather large amount of transaction costs.

Different levels of A appeal to different investors with different background. For example,
it is reasonable to expect an individual investor with relatively small amount of capital to
choose a A value closer to zero since the unnecessary yet large amount transaction fees would
eat up a lot, if not all, of his or her capital . Whereas institutional investors or individuals
with large amount of capital available may be indifferent for various A values as the reduction
of transaction costs on the total expected return is little compared with the denominator that
they are approximately negligible.

It may be easier to understand by imagining two sets to represent the whole risky assets
universe. Let

In = {i | risky asset i is currently in the portfolio } (3.6)

and

Out = {i| risky asset i is currently not in the portfolio but is included in the asset universe }

(3.7)
Then, for this example,
In = {BA, GM, GOOG, IBM}
Out = {AAPL, DD}
and the binary variable could be also writtern as:
1, ifiinln
Ari= (3.8)

0, e

3.2.5 Balance on portfolio value

Vi = ‘/1‘ — TCt (39)
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where

N
Vi=Y P.X:, (3.10)
i=1
Figure 3.4 helps to understand the equations above.

v=V-TC

v=V-TC v=V-TC V=p-*X

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2016

Fig. 3.4 Evolution of a quarterly rebalanced portfolio value

Equation 3.10 simply denotes that the portfolio value during any two rebalancing time
points equals to the summation of monetary values of all the risky assets positions, which are
multiplications of the market price of asset i and the number of shares of that asset hold in
the portfolio. This is highlighted in the yellow box in figure 3.4. Whereas equation 3.9 states
that the total value of the portfolio is updated by subtracting the incurred transaction costs
moving from the current to the new portfolio which is expressed by the purple time points
in figure 3.4. Noticing the portfolio value V; is maintained for over time intervals while the
updating of transaction costs is instantaneous which happens only at the beginning of each
rebalancing time period.

Now, the task remains to model the transaction cost functions.

3.2.6 Transaction Costs modelling

Theoretically, both linear and non-linear transaction cost functions with any type of non-
integer exponents coefficient could be computed and be incorporated into the model. However,
considering that increasing complexity of transaction cost functions would cause a lot of
drawbacks such as deepening computational burden, largely increasing problem solving time
and making it unnecessarily hard for general investors to understand the model but bring
about barely no sounding benefits except for uncertain accuracy, we decide to include linear
transaction costs and only fixed transaction fees for non-linear transaction cost function in
this paper. In addition, exact modelling of such functions is out of the scope of this paper
and is left for those dear data scientists fellows.

Fixed transaction costs could be modeled as:

N
Y fevilai— Al =TG (3.11)
i=1
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The total transaction costs are a summation of transaction costs on each risky asset position.
Moreover, equation 3.11 states that transaction fees are incurred if and only if position
changes take place. In other words, fine - tuning shares of the existing positions incurs no
transaction costs and only opening new positions or closing old position would. Continuing
the example given in the previous section, only the transactions on AAPL and IBM positions
cause fee loses for the investor. If AAPL and IBM share a common fixed transaction cost
rate of $1 per trade, then moving from the current portfolio to the new one makes $2 dollars
losses in portfolio value in total for this investor.

Yet, the more popular practice of transaction costs implemented in world’s most financial
markets is linear. Linear transaction costs have numerous advantages for both practitioners
and research communities. First, it is easy to understand, easy to write down and easy to
implement. The most common cases of linear transaction costs are linear either on the
number of shares or on the transaction dollar amounts. For example, TradeKing”[12], one
of the leading online brokers based in America charges $4.95 per trade for stocks whereas
Hong Kong Exchange asks for “a Trading Fee of 0.005% per side of the consideration of a
transaction (rounded to the nearest cent)". [13] For another, solutions to linear transaction
costs are feasible and achievable for most computational engines to carry out. Here, in this
model we choose the more complicated linear transaction cost function: linear on transaction

amount to inject into the model and thus problems with linear on shares are self-evident.

Linear transaction costs are formulated as:

N
Z le; iB ity i = TG (3.12)
i=1
where [c; ; is the linear transaction cost rate on asset i at time point t, usually in forms of
basis point; F; ; is the market price vector for all risky assets at time point t and 7, ; denotes

the number of shares to trade on position i to achieve the new optimal portfolio.

Note however that there could exist different buy or sell cost rates. Not only various
assets could have specific buy or sell cost rates that differ from each other but the rates may
also vary from time to time. This assumption holds water in the real world as stocks in
different industries are imposed of different regulations and commission fees charged by

different financial intermediaries such as banks or index funds vary from each other.

Now with equation 3.9, 3.11 and 3.12, portfolio value is successfully updated in accor-
dance with the transaction cost type and transaction details at each rebalancing decision time

points, we could then compute the new portfolio weights vector accordingly.

2 Access the website on Saturday eth May, 2017, https://www.tradeking.com/rates


https://www.tradeking.com/rates
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3.2.7 Constraints on weights

W= N (3.13)

Weight proportion of asset i w; ; in the new portfolio is computed as the monetary value
of position 7, which is a multiplication of the market price F; ; and shares holdings x; ; in the

new portfolio divided by the total portfolio new value.

In addition, we impose fully invested constraint on the weight vector:

wi =1, (3.14)

=

i=1

The sum of the proportional weight on each risky asset i must equal to one, which means that
throughout portfolio investment time horizon, the investor is expected to invest all his or her
money on the risky assets and would never withdraw any capital out from the portfolio for
other purpose.

Moreover, there are upper and lower bounds on the weight for all assets in the investment
universe to ensure that neither of the following two extreme cases happen. First, there is only
one position in the optimal portfolio with weight component equals to one which includes
large idiosyncratic risks. Second, the final solution contains positions in nearly all risky
assets, each of which has marginal weight proportion that is non-sensible. Investor is flexible
to impose bounds that vary with each risky asset. For example, invest A shows special
preference to AAPL stocks but relatively averse agains GM shares then he or she could
choose a [5%,80%)] bound for AAPL while a [0%,2%] bound for GM.

In general, weight components of each of the assets have to follow

lm'at’,' < wt,i < I/tt’l'anl', = 1, e ,N (315)

which is equivalent to
Wi € [liar i uiar]  ifa ;=1

(3.16)
Wri = 0 if ag i = 0

Equation 3.16 ensures that the optimal portfolio would either take significant amount in
each of the positions in the portfolio and absolutely zero on the others. To put it in another

way, the investor’s wealth is fully allocated to the stocks in set /n only.
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3.3 The Complete Model Formulation

3.3.1 Fixed Transaction Cost CCMYV Formulation

N N
minimise Z Z Oy i jWr.iWr.j
Ay i X115 Wre 51t i i=1j=1
N
subject to Y wiwii =R,
i=1

1, ifx,; >0

ari = i
0, otherwise

K

N
Z ’az,i —Az7i| =A,
i=1

N
cht,i’at,i —A | =TG,

i=1
Xei=Xe i+,
N
vi=)Y PiXi—TGC
i=1
~ Bix
Wl‘,i - 9
Vi
lt,ial,i SWz,i < Us idy
where i,j=1,...,N,

A=024,...2K.



20 Model Formulation

3.3.2 Linear Transaction Cost CCMYV Formulation

N N
minimise Z Z Ot,ijWt,iWt, j
At i Xt,iWr il i i=1j=1 /
N
subject to Z Mriwe i = R,

1, ithJ' Z 0

ari = .
0, otherwise
K

N

Z |at,i _At,i| =A,
i=1
N

Z le; iB ity i = TG,
i—1

Xi=Xe i+,

N
Vr = Z Pt,iXt,i T
i=1

Vi
lt,iat,i <wyi < Uyp iy
where i,j=1,...,N,
A=0,2,4,...,2K.

Notice that the only difference between these two models is the transaction cost function:
the fixed transaction cost CCMV model for fixed hurdle commission fees and the linear one
for those charged on per transaction amount basis. Please again refer to the list of Symbols
following the table of content at the beginning of the paper for a complete collection of these
symbols and notations that used in the models.

3.4 Computational Concerns

Although the two models built up above are both valid and theoretically soluble for powerful

computational engines, in this section I would point out a number of straightforward facts
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underlying the models, as well as analyse some conditions and relaxations to release the
computational burden and thus improving solving speed while not losing any legitimacy of
the models.

1. The monetary value of the portfolio at time point T = 0 should be exactly the same as

investor’s initial wealth Wy. In other words, we set V = Wj.

2. Ay, the binary variable representing whether asset i is currently included in the current
portfolio or not at time point t, equals to 1 if it is, O otherwise is one of the intermediate

results and is computed on demand. Mathematically,

1, ifiinlin
ti— .
0, otherwise

3. In the model set up, we assume either fixed or variable transaction cost rate could be
different for different risky assets at different time period. For simplicity reasons while
not losing any generality, we impose the same cost rate for all risky assets over the
whole investment period in the following analysis. That is to say, we assume there
is a single fixed hurdle fee charged for all stocks in the asset universe and a single
basis point rate on transaction prices for linear part of the costs that applied to each

participants over the investment horizon.

4. Similarly, although we claim in the previous section that .both upper and lower bounds
could vary from asset to asset and from time period to time period, we impose the same

bounds on all the universe assets for the same reasons of simplicity and generality.

Combining these two relaxations, we have

Li=1;=1,
Upj = Ut j =1,
lepj=lej=lc,
fei= fej=fe,
for Vi,j=1,...,N,
t=0,1,...,T.






Chapter 4

Results

Hence, we combine and test different optimization models and evaluate their performances

mainly in two facets:
1. Static performance: Efficient Frontier

2. Dynamic performance: Rolling monetary portfolio value

4.1 Data Sets

I study and compare the performance of this newly developed CCMV model cooperating
with transaction costs under different scenarios using latest market data for all 30 component
stocks in the Dow Jones Industrial Average Index from Yahoo Finance. DJIA is widely
agreed as the good representative benchmark of U.S. stock market.

To improve generality and rationality of the project, the analysis time horizon is chosen
starting from March, 2008 to the latest data available time, which is March, 2017. I explicitly
include the financial crisis time to study how the model performs in extreme cases. Figure 4.1
is a visual representation of the return distributions of asset returns, in the order of increasing
standard deviation. It shows that nearly all of the 30 stocks has a sample mean close to zero
with not large standard deviations. Thus it is reasonable to apply Mean Variance model on
this data set.

Our optimization models with transaction costs were fed into computational engines
and implemented using OPL, the IBM ILOG Optimization Programming Language, first
published by The MIT Press in 1999, together with its script language. For the solver, I chose
IBM ILOG CPLEX Optimization Studio which is a common solving software that searching

for optimal solutions under Windows system . Moreover, the detailed scenario analyses and
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Fig. 4.1 Return distributions of DJIA components

recursive functions are written in R language and implemented in R studio. Here I point out

the packages have been utilized throughout the project:
* Systematiclnvestor
* PortfolioAnalytics package
 Portfolio Probe

which are some of the most widely used packages for financial applications in R.

4.2 Static performance: Efficient Frontier

First, to solve the Fixed Transaction Cost CCMV model, we consider a quarterly rebalanced
portfolio with the asset universe as all N = 30 component stocks from the DJIA index. At
each balancing time point t, we look back the most recent 3 months market prices, i.e. the
latest quarter history of information and update the expected return, covariance matrix input
for the model. Assume the desired number of distinct risky assets the investor wish to hold
in the portfolio over the entire investment horizon is K = 6. We vary the desired number of
changes in position in the new portfolio ranging from 0 to 2K, in this case, 12, to study the

effect of different position change levels on portfolio performances in the measure under


http://systematicinvestor.github.io/about/
https://cran.r-project.org/web/packages/PortfolioAnalytics/index.html
http://www.portfolioprobe.com/
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Mean- Variance framework. The results are presented in the form of mean-standard deviation

diagrams as follows:

portfolio.risk vs Return for period i= 188
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Fig. 4.2 Efficient Frontier for different at period i = 188

From the risk return diagram shown in figure 4.2, there are 12 labels at the top right
corner explaining meanings of the scatters and frontiers. First, there are 30 risk return scatter
points representing each of the expected performance of all the 30 DJIA component stocks,
stock symbols are shown in pink color slightly beneath the corresponding points. Second,
two efficient frontiers show in the middle of the graph, representing the best expected mean-
standard deviation combinations for portfolios. The black dotted line represents efficient
frontier for general long only Mean Variance model while the sky-blue dotted line shows that
for cardinality model with no other constraints. Notice that since shorting is not allowed, the

black curve terminates at the highest return point, which is CAT for the investment period
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portfolio.risk vs Return for period i= 252 portfolio.risk vs Return for period i= 314 portfolio.risk vs Return for period i= 377
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Fig. 4.3 Efficient Frontier comparison for different time periods i = 252, 314, 377 with no
transaction costs

i = 188. It is sensible that the CCMYV efficient frontier is under the MV efficient frontier since
we restrict an extra constraint for CCMV and thus limits its behaviour. More importantly,
there are 10 rainbow colored triangle shaped points representing 10 different the investor
carries out for the investment period i = 188. Capital letter “C" denotes the scenario where
the investor is rather indifferent to the transaction cost amount thus impose no position change
constraint in the fixed CCMV model, whereas letter “G" represents the situation where the
investor is even more indifferent about transaction fees thus further eliminate the cardinality
constraint. “B H" shown in bright pink color is a common strategy usually known as “Buy
and Hold". For this scenario, I first compute the optimal solution for a CCMV problem and
then never do any changes in this portfolio. You may use the sentence "Buy and forget about
it" to better understand this strategy. It is commonly computed as a benchmark to better study
the active investment. The remaining 9 labelled as even numbers ranging from 0 to 12 just
represents the RHS of constraint 3.4 which is the desired level of position changes A. You
many wonder the difference between the strategy of "Buy and Hold" and the "zero position
change" strategy, which looks similar at the first thought, but indeed they are different, in the
sense that the proportion in the "zero position change" strategy may vary from time to time,
while that in "Buy and Hold" is remain unchanged.

Here are the remaining plots in this series of figures sharing the same structure and
purpose only with different expected return, covariance matrix and market prices input.
Observe, compare and contrast them provides me with several interesting findings and further

enlightens a number of investment insights.
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Fig. 4.4 Efficient Frontier for different at period i = 252 with fixed transaction costs

Figure 4.3 gives a comparison among various efficient frontiers at different time periods,
with # =252, 314, 377 respectively. Since the expected return, covariance matrix and market
prices input varies from each other, the scatter plots of each risky asset i and the correspondent
efficient frontiers differ too, so are the performances of our 10 . Yet, there are some general

findings for efficient frontiers with no transaction costs summarized as below:

* The CCMV efficient frontiers closely reaches around the MV efficient frontiers for all
of the three time periods. This phenomenon makes sense since shorting is not allowed
in the MV model here, many of the weight components are automatically forced to be
zero. Hence, CCMV efficient frontiers do not differ a lot from MV efficient frontiers.

* The performance of various strategies depends on the specific investment settings and
the assessment of goodness of largely depends on the investor’s risk attitude . For
example, the portfolio that setting position change as 10 has the highest expected return
at period i = 252, whereas “Buy and Hold" strategy is the best in terms of expected
return at period 1 = 377. In addition, at each time periods, some could realize the best

theoretical performance as they almost touches the efficient frontier.

Figure 4.4 and 4.5 give a nice visual presentation of the effect of transaction costs on the
portfolio performance. The net in transaction cost portfolio performances are presented by
black asterisks. In detail, the sub plots in figure 4.4 share the same background composed
of individual scatters and the two efficient frontiers because they share the same set of data
input at period i = 252. In addition, the rainbow colored strategy performance in prior to

the transactions also remain the same for these three. The key point worth attention here,
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Fig. 4.5 Efficient Frontier comparison for different time periods i = 188, 252, 377 with fixed
transaction cost $2.5 per position change

however, is the relative positions of the black asterisks compared with the triangles. For both
“Buy and Hold" and “A = 0", no matter how large the fixed transaction costs rates are, they
remain the same. The reasons lie in the very strategy nature as there would be no position
changes for these two portfolios throughout the entire investment horizon. While for others,
larger the position change A, more obvious the effect of fixed transaction rates is. In the last
subplot, For example in the last subplot, $10 per position change transaction rate drops the
expected return of strategy: “A = 12" more than half to only about 0.045%. And the effect is
also strategy-dependent since “A = 12" has the most rapid position changes . To conclude,
the effect of transaction costs on efficient frontier mainly appears to be the reduction on the
portfolio expected return while the portfolio risk remains unchanged. Higher the position
change level, more rapid the transaction activities, thus larger the transaction fees and more
reduction on the expected alpha.

Figure 4.4 compares the efficient frontiers from another angle and reveals how effects
differ for different time periods imposing the same rate of transaction cost. Usually the
red color triangle, representing the “cardinality" portfolio is unseen from the plot simply
because this is covered by the same performance scatter of the position change strategy. Each
cardinality solution itself would also have a similar position change vector, not as a constraint
input , but an intermediate result, which would be coincided with the same position change

level constrained model.
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4.3 Dynamic performance: Rolling monetary portfolio value

over investment period

Note: Please explore the interactive versions of these figures for the best presentation and

observation of this section by clicking the light-blue hyperlink given right after each static
figures.

To better study the model performance, I build up 10 by combining different parameters
to make comparisons under different scenarios that may appeal to different investors. In the
order that consistent with that of the labels shown in figure 4.6 dynamic, I now explain the
portfolio settings of each of the 10 :

1. Mean variance Portfolio Selection model in-cooperating with transaction costs.
2. Mean variance Portfolio Selection model.
3. Cardinality constrained Mean variance Portfolio Selection model.

4. Cardinality constrained Mean variance Portfolio Selection model in-cooperating with

transaction costs.

5. Mean variance Portfolio Selection model with no weight bounds constraints. One
more words here, since there are bounds on weight vectors in the model described in
Chapter 3, this strategy is deliberately carried out to compare with the performance of
opMV to study how weight bounds would affect the final solution and if so, what are

the magnitude.

6. The next five model are the replication of the above ones with investment capital
updated by the transaction costs incurred. To put it in another way, no matter whether
transaction costs are computed in the previous or not , those five models assume the
amount of transaction costs are negligible thus does not take it into consideration
for the evolution of monetary value. Whereas all the with “withTC" suffix are the

corresponding with portfolio value updated in the procedure described in section 3.2.5

All of the strategies start with initial monetary value $1000,000, that is Wy = V) =
$1000,000. And the investor decides a cardinality level K = 6 for all the RHS of the
cardinality constraints 3.3 equation meaning that as long as the involving the decision of
selecting K risky securities from the investment universe, in this case, it is the 30 risky

component stocks of DJIA Index, he or she would maintain the portfolio size to be 6 over the


https://plot.ly/~zhouyx1122/123.embed
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entire time period. The investor put 2.5% lower bounds and 20% upper bounds on all of the

positions.
We assume several set of parameters in the transaction cost functions:

* Fixed cost rate: $5 per position change;
* Fixed cost rate: $100 per position change;

* Linear cost rate: $10 basis point of the transaction amount.

2balanced Portfolio Value with fixed transaction Cost $100/position 85% weight upper bc
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Fig. 4.6 monetary value of a quarterly rebalanced portfolio with fixed transaction cost

constraint

I will first elaborate on figure 4.6 dynamic which shares the similar structure with all

of the other figures to be shown in the following. Here are some observations and their

implications:


https://plot.ly/~zhouyx1122/123.embed
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* First, this figure serves as a powerful evidence against the frictionless assumption in
MYV model. Each of the former without “withTC"-suffix, representing portfolios in
perfect and frictionless world, always outperforms its corresponding “withTC"-suffix
counter-party. This is quite understandable: investors suffer from transaction costs in
the real life, which implies that we shall never be naive to neglect transaction costs
in the frictional investment settings in real life. Those theoretical portfolio monetary

growth are too good to be true;

» Secondly, if we take SP 500 as a benchmark which has a performance of no more than
150% accumulated return, the strategies shown in above had bravo performances in

terms of realized return which is due to positive asset allocation.

* In general, these portfolio show similar evolution trends since they are all under the
mean variance framework. All of the 10 suffer a deep loss during the financial crisis

period but recover year by year during the total 10 years time window ;

* Now focusing only on the opMV (Mean variance Portfolio Selection model) and
opMV.noPos (Mean variance Portfolio Selection model with no weight bounds con-
straints) . Observing that the purple trend is above the orange line over the entire 10
years, meaning that imposing extra weight constraints do limit a lot of the portfolio
performance. However, for the reasons explained in section 3.2.7, we have to inject this
constraint in out model to ensure diversification and rationality. To investigate further,
we compute stacked bar-plot representing the evolution process of weight vectors over
the investment horizon for these two different and it is shown in figure 4.7. In this
figure, x-axis represents the time series and y-axis denotes the weight components of
the portfolio. Different colors represents different asset holdings in the portfolio at
that time period. More the colored blocks, larger number of risky assets are hold in
that portfolio. Noticing that in the left sub-panel, there are only minimal number of
weight components for strategy opMV.noPos. During most of the 10 years, there are
only one or two, or up to three different color bars made up the vertical 100% fully
invested weight constraint, meaning that the investor’s capital is only allocated to very
few amount of risky assets which would involve large idiosyncratic risks. Compared
with that in the right panel for strategy opMV, with bounds imposed on the weight
vectors, there are at least 5 different colored bars at each of the investment time point.

Recall this is because the upper bound for all of the assets are 20%.

* Now let us turn attention to CCMV models which are the focus of this paper. Ob-
serving that in figure 4.6 the green opC approximate closely with the orange opMV
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Fig. 4.7 Weight Evolution comparison: opMV v.s. opMV.noPos

and one could hardly note the differences between them. While for the trends with
transaction costs, one can easily distinguish between the pink opMV.withTC and the
gray opC.withTC. Possible reason behind this phenomenon could lie in the fact that
with a cardinality constraint, there are limits on open positions in the portfolio, which
then incur less transaction costs. To verify this conjecture, we made more explorations
on the phenomenon . In figure 4.8, we aim to study the effect of transaction costs on
various different strategies. The pair of time series sharing the same color represent the
pair of with and without the update of transaction costs. It is clear that the transaction
costs have the much smaller effect on with cardinality constraints. Drops are nearly
non-significant for both the lime-blue opC and purple opC.TC which consolidate our
reasoning that imposing cardinality constraints force less position changes along the
investment period which then results in less amount of transaction costs. This finding is
exciting and evolutionary because theoretically, MV would always outperforms CCMV
model, however here after incorporating the transaction costs, there is a complete

reversal of the story.

Up to this point, I could new tell the purpose of building such a cardinality constrained
mean variance Portfolio Selection model in-cooperating with transaction costs, namely
opC.TC. Compare the lime-blue opC and purple opC.TC time series in figure 4.8.
Once cardinality constraints are already present in the model, adding transaction costs
constraints does not change the result a lot, for the same reasons analyzed above.

This motivates me to think deep about the model. We create cardinality constraints and
in-cooperate it into portfolio optimization model in the aim of avoiding large number

of transaction fees. Only imposing transaction costs constraints by no means ensure the
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Fig. 4.8 Focused Monetary portfolio value over one single investment period

desired level of portfolio size while it is not the same the other way round: imposing
only cardinality constraints on the portfolio optimization model not only restricts the
portfolio size to be exactly the number of positions the investor would like to hold, but
it simultaneously prevents extreme turnovers or large amount of transactions. This is
indeed the advantage of cardinality constraint over the other side constraints such as

transaction cost constraints and turnover constraints.

4.3.1 Re-balancing frequency: Monthly v.s. Quarterly

In this part we are particularly interested in the effect of re-balancing frequency on the
portfolio performance. Consider two investment only differ in re-balancing frequency, one
of them is monthly rebalanced while the other is quarterly rebalanced, all other portfolio
settings are the same. Namely, in the first strategy, the investor is impatient and examines
his or her portfolio on a monthly basis and would change his portfolio holdings if necessary
while the later investor check the portfolio per three months. Here are the differences.

In figure 4.9 dynamic (a), dynamic (b) I collect the realized portfolio mean- standard
deviation data pairs and map them to the risk return diagram, in the attempt of reproducing
the shape of efficient frontiers in MV model. There are 107 data samples for each of the 10


https://plot.ly/~zhouyx1122/125.embed
https://plot.ly/~zhouyx1122/129.embed

34 Results
Monthly Efficient Frontier for different strategies Quarterly Efficient Frontier (fixed TC) for different strategies
0.035
* opMV 001 e opMv
e opC . e opC
e opC.TC e opC.TC

0.025

°
o
o

expected return

0.005

®  0pMV.noPos

©  opTCwithTC

®  OpMV.WithTC
opC.withTC

®  OpC.TC.WithTC
opMV.noPos.withTC

45M

Moneytary Value
= .
=

0.002 0.004 0.006
sigma

(a) Monthly Efficient Frontier

Fig. 4.9 Efficient Frontier comparison:

Monthly rebalanced Portfolio Value with linear transaction Cost Effect

—— opTC
opMV

—— opC

—— opCTC

—— opMV.noPos

—— opTC.withTC
OpMV.withTC

—— opCwithTC
OpC.TCWIthTC

R0 — opMV.noposwithTC

-800Z

(a) Monthly linear cost

0.009

0.008

0.007

0.006

0.005

expected return

0.004

0.003

0.002

0,001

am

Moneytary Value

®  opMV.noPos
©  opTCwithTC
®  OpMV.WithTC
opC.withTC
. ®  opCTCWIthTC
opMV.noPos.withTC

0.001 0.002 0.003
sigma

(b) Quarterly Efficient Frontier

Monthly v.s. Quarterly, linear cost

Quarterly rebalanced Portfolio Value with linear transaction Cost Effect

—— opTC
opMV

—— opC

—— opCTC

—— opMV.noPos

—— opTC.withTC
OpMV.withTC

—— opCwithTC
OpC.TCWIthTC

—— 0pMV.noPos.withTC

-800Z

(b) Quarterly linear cost

Fig. 4.10 Monetary portfolio value comparison: Monthly v.s. Quarterly, linear cost

for monthly rebalanced portfolios and 37 for the quarterly rebalanced ones. So in total there
are 107 x 10 = 1070 and 37 x 10 = 370 scatters in the left and right panel respectively. One
is easier to imagine the “Boomerang” shape of efficient frontier from the monthly sub-plot
but harder for the right sub-plot due to data deficiency. We find that large number of points
concentrate together within the low risk low return region (lower left corner) but it is hard to
derive any conclusion as the realized data plots could end up realized in anywhere among the
risk return diagram

Next, we compare these two portfolios in terms of monetary portfolio value shown in
figure 4.10 dynamic a, dynamic b. Compare the left and right panel, one can conclude that
frequent re-balancing one’s portfolio worsens the reduction of transaction fees on the portfolio

value. For example, focus on the opMV.noPos and opMV.noPos.withTC time series on the two
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Fig. 4.11 Transaction Cost type: Linear v.s. Fixed

sub plots, the value of opMV.noPos.withTC is only around half of the value of opMV.noPos for
the major time periods on the left. Although the value of opMV.noPos.withTC is also below
that of opMV.noPos, the difference is much smaller for the quarterly rebalanced portfolio.
This suggests that frequently adjust one’s portfolio incurs large amount of transaction costs,
which would even eat up most of the investor’s capital for small investors. However, there
are also benefits. Focusing on the time periods of two financial turmoils at the end of 2008
and in the beginning of 2016, the monthly balanced portfolio shows more stable performance
than the quarterly one due to its diligence on frequently checking on the market thus avoiding

extreme losses caused by the crisis.

4.3.2 Transaction Cost type: Linear v.s. Fixed

In the following we are going to analyze the impact of different transaction costs of the
optimal results. Figure 4.11 quarterly fixed 100, quarterly linear compares portfolio growth
for a quarterly rebalanced portfolio under different transaction cost functions. The left figure
shows a realization of fixed transaction cost at $100 per position change while the right one
represents a $10 basis point commission charge on per dollar of the transaction amount.
Once again there are no solid conclusions about this group of comparison. Generally, we
observe that the one-to-one correspondence between various and their with transaction cost
counter-parties are more obvious for the linear type of transaction costs due to the existing

linearity.
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4.3.3 Transaction Cost Magnitude Effects

In this last part of the section, I present the impact of the magnitude of fixed transaction
cost rates. figure 4.12 dynamic 5, dynamic 100. The largest findings from this group of
comparison is that the rate of $5 per position being relatively subtle compared with the large
portfolio capital in million dollar scale, the drops of “with.TC" are also small compared with
that of the $ 100 magnitude.


https://plot.ly/~zhouyx1122/121.embed
https://plot.ly/~zhouyx1122/123.embed

Chapter 5

Conclusion

5.1 Summary

The aim of this thesis was to contribute to the development of cardinality constrained portfolio
optimization models with transaction cost.

In Chapter 2 we gave a review of previous studies on cardinality constrained portfolio
optimisation with transaction cost. Work on cardinality constraints mean variance model in
the last two decades has been largely focused on developing heuristic algorithms with main
efforts paid on imposing side constraints such as turnover constraints and number of trades
constraints, none of which could guarantee the existence of an optimal solution. For the work
on transaction cost, there seems no consensus agreed upon the formulation of transaction
cost functions, making studies independent and disjointed with each other.

Given the fact that there exists no exact re-balancing (dynamic) algorithms to CCMV
with transaction costs problems according to the literature review, the whole modified CCMV
net in transaction costs effect models fully described in Chapter 3 are original works and
completely brand-new. Especially for the formulation of position change constraint, there
could be even more applications for real life problems in many aspects which is elaborated
in the following section. Chapter 3, where we presented optimal solutions for the transaction
cost model, contains the first original work in this thesis. We began by giving our model a
detailed problem setup, explaining the typical problems encountered in real life and give out
the objective function. I then go through each of the constraints appeared in the model for
their reasons for existence, underlying logic and computational methods. Tables, figures and
simple illustrating examples are included for better understanding. We then integrate the
model setups and give the complete model formulations for both fixed and linear constraints.
In the last part, we point out several practical concerns and give the corresponding relaxation

conditions.
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To showcase the performance of my model, figures of efficient frontiers and of rolling
monetary value of the portfolio are given in the previous chapter, chapter 4, for static and
dynamic performance respectively.

The experience is exciting and evolutionary because theoretically, Mean Variance models
would always outperforms CCMV models with cardinality constraints, however here after
incorporating the transaction costs, there is a complete reversal of the story. From both
intuition and the efficient frontier plots given in figure 4.2, the black solid efficient frontier
for MV model is always on the above of the dark blue dotted curve, which represents the
most efficient portfolio realizations for CCMV models. This is due to the fact that imposing
cardinality constraint limit a smaller asset universe from which the optimal solutions are
drawn. Hence, from the very formulation of the model, MV would always be better for
investors, guarantees a higher expected return for the same level of risk or provides smaller
risk exposure at the same targeted expected return level. However, incorporating with the
transaction costs, the net in transaction cost effect portfolio risk-return tradeoff are much

more complex in reality.

5.2 Further Applications of the Position Change Constraint

This model could have a lot of applications, to name a few, consider the following examples.

In a class of a secondary school of size n, say 50, we select a subgroup of elite stream with
only size N, say 6, how to choose initially these 6 team members is a cardinality constrained
problem. Yet, how to balance and maintain the team members could be solved by this CCMV
model incorporating position change constraint. There are usually a number of practical
objectives on the implementation of such an elite stream:

1. Stability.
2. Competitiveness.

The first requirement ensures a degree of sense of security for students currently within the
group, which in turn is how it attracts those currently out of the group; while the second
requirement could be regarded to facilitate competitiveness and thus increasing the average
performance of the whole class. Our model is effective and efficient in achieving both of the
two objectives.

More specifically, we substitute the expected return in the portfolio optimization problem
by each student’s expected overall score and replace the covariance matrix by the progress rate
representing the improvement potential of the student. Then the model could be interpreted

as to solve the following problem: given each student’s expected overall score and potential
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progress rate, what will be the optimal evolution of team member components for a desired
time interval, for example, one academic year with monthly examination, i.e. updates in the
aim of maintaining both the stability of the team and increasing the average performance of
the whole class by facilitating competitiveness?

Such an “Elite stream design" is rational and has a wide-spread use in both academic
and industrial organizations. Increasing the RHS of the position limit A would result in
more intense competitiveness thus picking an appropriate number K really depends on the
manager’s preference between stability and competitiveness. And it is only one of the many
applications, other examples would be: customer loyalty group, balance of daily in-taken
calories, managing life activities..., which will be skipped in this thesis for simplicity

reasons.

5.3 Model evaluation

5.3.1 Advances of the model

One could probably sense how flexible and customized the model can be by reading through
the previous chapters. To emphasize here, investors are not only able to set the general
parameters of their portfolios such as rebalacing frequency, desired position changes A and
preferred portfolio size K, but could also fine tune on the detail settings such as weight

bounds on each of the risky assets.

5.3.2 Further Developments

Despite the various advantages of the model, it is still deficient in the following considerations
which I feel obliged to put it frankly for the sake of the whole research community and
investment society . Here in the model we generally assume that investors would choose
certain strategy and stick to it for the entire investment horizon. In other words, although the
dynamic model do gives optimal solutions according to different time periods, the investor
is not allowed to pick multiple position change preferences during the investment horizon.
A more logical, flexible and profitable strategy would be like this: at each rebalancing time
point, the investor could also modify the strategy he or she wants to use according to the
latest market condition and clients’ capability. For example, investor would like to pick
zero position change or even “buy and hold" strategy when there are large economic turmoil
while choose to hole general unconstrained portfolio when large amount of capital is injected
to the original investment. However, such a problem makes A no longer a constant but a

random variable. It is NP-hard already not to mention developing a dynamic investment
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strategy policy! But solving that challenging yet exciting problem would be highly profitable.
For example, we could extend the original "Long-only" portfolio by relaxing the weight
constraints to increase profitability, possible solutions may be building a 130/30 index as
suggested by Prof. Andrew Lo [6].

To conclude, sincerely hope that all the original contributions to knowledge in this the-
sis could be appreciated and I will keep researching on the remaining problem to bring even
more efforts.
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