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CHAPTER

OVERVIEW

This part of the project develops an empirical thesis about asset price processes. We
examine various time series models on multiple asset processes including a stock
return as in index, a mutual fund return series comprised of a diversified portfolio,

and a mutual fund return made up from Consumer Staples Portfolio.

1.1 DATA COLLECTION AND ORGANIZATION

1.1.1 Asset Process

Three asset processes are included in this thesis, including FDFAX, POAGX and S&P
500, each of which represents a non-diversified portfolio mutual fund, diversified
portfolio mutual fund and a market portfolio stock index.

A summary table is given below in figure 1.1, highlighting data information and
their features specifically. We choose these asset processes in the hope of finding
different time series patterns in the data and thus assess effectiveness of different models
in modelling the asset returns. Profiles of the data are referred from , WRDS

CRSP and respectively.


https://finance.yahoo.com/quote/%5EGSPC/
https://money.usnews.com/funds/mutual-funds/mid-cap-growth/primecap-odyssey-aggressive-growth-fund/poagx

Fund Fund Name Inception
Ticker Date
FDFAX | Fidelity Select 1985-07-29
Consumer

Staples Port

POAGX | Odyssey 2004-11-02
Aggressive
Growth Fund

S&I" Standard and | 1950-01-03
Poor's 500 (Investigatio
Index n Date)

Features

* open-end fund incorporated in

the USA;

* Objective: capital appreciation
* non-diversified

» Objective: long-term capital

appreciation
1%t in Mid Cap Growth

* aggressive

= Ranked among the top U.5.

Diversified Stock Funds

» Market index

CHAPTER 1. OVERVIEW

Profile

* = B0% of assets in manufacture, sale, or distribution of food and beverage
products, agricultural products, and products related to the development of
new food technologies

The fund invests primarily in the common stocks of U.S. companies, emphasizing
those companies with prospects for rapid earnings growth. It may invest in stocks
across all market sectors and market capitalizations and has historically invested

significant portions of its assets in mid- and small-capitalization companies.

Standard and Poor's 500 Index is a capitalization-weighted index of 500 stocks.
The index is designed to measure performance of the broad domestic economy
through changes in the aggregate market value of 500 stocks representing all
major industries. The index was developed with a base level of 10 for the 1941-43

base period.

Figure 1.1: Summary Table for Data Information

1.1.2  Graphical Visualization and Investigation window

The first glance of the daily price processes across their entire sampling period reveals

that all of the asset closing prices appear to have upward trend, while S&P 500 presents

to be the most volatile among the three, with more up and downs. Yet, as their historical

length is unequal, such comparison provides little value. Therefore, we select a unified

the training period to be from 2005-01-03 to 2017-01-31 for all the three assets. They

are visualized in figure 1.3, we see that S&P 500 is of much value in maginitude

than the mutual fund prices, Therefore is it hard to compare the asset price processes

directly. This point together with the stationary property discussed in the following

section motivated us to focus on their log returns, a common subject of interst in

financial analyses.
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Plot of FDFAX Entire Time Series (1 - 8253)
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Figure 1.2: Entire Path:: Time Series Plot
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Plot of Aggregated Training Daily Closing Price Time Series (1 - 3041)
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Figure 1.3: Aggregated Price Evolution



CHAPTER

STATISTICAL PROPERTIES OF

PRICE AND RETURN SERIES

2.1 STATIONARITY

2.1.1 Mathemitical Notions

Non-stationary data cannot be modeled or forecasted. Results based on non-stationarity
can be spurious, and lead to problems such as false serial correlation in stock prices.
(Simaan, )

A time series model for {X,}, is said to be stationary if all its statistics remain
unchanged after time shifts, i.e. if they are the same as the statistics of X; +t, for all
possible choices of ¢y. This is the so-called strong stationarity, which requires strictly
that the statistical distribution remain unchanged at any time points.

There is also a weaker notion of stationarity, which requires onlt the first two
moments to be stationary while put relaxations on the higher moments. In othe words,
a time series model is said to be weakly stationary if its mean function is constant, and

its auto-covariance function is a function of the difference of its arguments.

7
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In practical, strong stationarity is rarely observed and hard to prove from both

ends, whereas the weak-stationarity is much more useful in practise.

2.1.2  Checks for Stationarity

There are many methods to check stationarity for a time series, by conducting investi-
gation on time series including direct observations St, series of residuals remaining

from the direct observations , or other terms.(Brownlee, )

We investigate the stationarity of our three asset processes in following sub-

sections.

2.1.2.1 Graphical Visualization

A quick review of the time series plot of the data provides a visual check for obvious
trends and/or seasonality. From figure 1.2, we have already seen that obvious trend is
presented in all of the asset prices. The same is not true after taking the log difference.
Figure 2.15 presents the log return of the three assets, no obvious trend is observed,
suggesting that their first moment may be constant. But, the variance clustering is very
significant even at the first glance at the series: volatility is clearly clustered arounf
time of financial crisis around 2008-2009 and 2011-2012.

p.10 FPUAGK Log returns 2005-01-03 1 201/-01-31 0.10
0.05 0.05
0.00 0.00
-0.05 -0.05
R L L |
Jan03 Mar01 Jun01 Jul01 Sep01 Dec01 Mar01 Jun03 Aug 01 Oct01 DecO1
2005 2006 2007 2008 2009 2010 2012 2013 2014 2015 2016
0.10 SF LoQ returns 2005-01-03 ¢ 201 /7-01-31 0.10
0.05 0.06
0.00 0.00
-0.05 -0.05
L L L L R |
Jan03 Mar01 Jun01 Jul01 Sep01 Dec01 Mar01 Jun03 Aug 01 Oct01 Dec01
2005 2006 2007 2008 2009 2010 2012 2013 2014 2015 2016
FUFAX LOO returns 2009-01-03 ¢ 2071 /7-017-31
0.05 0.05
0.00 0.00
-0.05 -0.05

L LR R R R L R R R L |

Jan 03 Mar01 Jun01 Jul01 Sep01 Dec01 Mar01 Jun03 Aug 01 Oct01 Dec01
2005 2006 2007 2008 2009 2010 2012 2013 2014 2015 2016

Figure 2.1: Aggregated Price Evolution
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2.1.2.2  Summary Statistics

The second tool we can use is the summary statistics. Time series are stationary if
they do not have trend or seasonal effects. In other words, common summary statistics
calculated on the time series are expected to stay consistent over time, such as mean

and variance of the observations.
We subset the daily closing price of the asset processes in to sub-samples, one
year-long per sample. The descriptive statistics including mean and standard deviation

is summarized in the following table 2.2:

year mean sd year mear sd
1 2005 B8.125168 @.4283078 1 2005 8.000370 @.009217
2 2006 9.702427 ©.5782656 2 2006 @.000778 0.003426
3 2007 11.347867 ©.3778345 3 2007 -0.000007 @.011072
4 2008 8.951133 1.3245619 4 2008 -0.001633 0.024013
S 2009 B§.448094 1.4118173 5 2002 ©.001620 @.018231
6 2010 11.568817 ©.7402438 6 2010 ©.000775 0.012952
7 2011 13.382051 0.8366775 7 2011 -@.000012 0.018423
8 2012 14.846768 ©.7084887 8 2012 @.000770 0.010742
9 2013 20.369096 2.4415163 9 2013 ©.001736 0.009015
10 2014 26.070937 1.2620590 10 2014 ©.000606 @.010941
11 2015 29.484594 1.0978291 11 2015 ©.000182 @.011414
12 2016 29.890292 2.4399954 1z 2016 ©.000432 @.012129
13 2017 34.085683 ©.2819431 13 2017 ©.801573 @.00BGE7

Figure 2.2: Summary Statistics for POAGX: daily closing price v.s.log return

Clearly, the means of prices on the left panel of table 2.2 are significantly different
from each other for successive samples, as well as the standard variation. To appreciate
the time variability to a larger extent, we also visualized the evolution path of each of
the sub sample (shown in figure 2.3) and an aggregated empirical distribution of sub

samples in figure 2.4:
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Figure 2.3: Sampling Path Comparison: daily closing price v.s.log return
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Figure 2.4: Density Comparison: daily closing price v.s.log return

We see that both the position and shape of the sampling paths are different for
different subsamples of prices, suggesting different means, trends, volatility and other
statistical properties may be fundamentally different for the sub-samples, which further

signals that the underlying data structure of asset prices are non-stationary.

Meanwhile, we perform same set of analyses on log prices processes. For POAGX,
we see from the summary table that the mean log returns are around for almost all sub-
samples across during the entire sampling period, and standard deviation all ranging
from 0.8% to 2.4%. The most volatile period to be around 2008, 2009 and 2011,
while 2017 appears to be more stable. The time evolution of the return processes
shows similar patterns across successsive years, centering around 0 and flutuate in
diffeerent times in a year. (Notice that the axis in this plot is month per year, and we
draw the sampling points for different years). More overlapping the paths are, more

stationary the original process is in terms of different time window. We see that log
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returns significantly cluster together around zero, while sub samples of daily prices

show distinctively different patterns among different years.

The same conclusion can be reached from the empirical density plots. These plots
were made to be the empirical distribution of sample points (i.e. returns or prices) for
each year, with the mean value of each sub-sample highlighted by a vertical dashed
line in the plot. We see that for closing price, both the centering and shape parameters
are significantly different for each year, and largely differ from a barbell shape. As
a contrast, log returns generally behaves much similar across the sampling period:

centering around mean, with a bell shape and pocess symmetry.

From these three comparison, we believe that while daily close prices do not behave
stationarily across the sampling period, stationarity (at least weak-form stationarity)
may exists in log returns for POAGX asset series. The same expereinces can be done

on the other two asset series.

2.1.2.3 Statistical Tests — Unit Root tests

The third tool for stationarity assessment is statistical tests. There are several statistical

tests available to check if the expectations of stationarity are met or have been violated.

Dickey and Fuller developed a test of the null hypothesis that & = 1 against an
alternative hypothesis that o < 1 for the model x; = x;_; + y; in which p; is white
noise. A more general test, which is known as the augmented Dickey-Fuller test (Said
and Dickey, 1984), allows the differenced series p, to be any stationary process, rather
than white noise, and approximates the stationary process with an AR model (see in
chapter 3).The ADF tests results shown in figure 2.5 revealed that, the null hypotheses
of a unit root cannot be rejected for all of the three asset prices, while the same set of
null hypotheses are rejected for all of the return processes as shown in the following

plot, suggesting they have roots smaller than the unit circle, thus are stationary.
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> adf.test(PO_training)
Augmented Dickey-Fuller Test
data: PO_training
Dickey-Fuller = -1.295, Lag order = 14, p-value = ©.8768
alternative hypothesis: stationary
> adf.test(SP_training)
Augmented Dickey-Fuller Test
data: SP_training
Dickey-Fuller = -1.2573, Lag order = 14, p-value = 0.8928
alternative hypothesis: stationary
> adf.test(FD_training)
Augmented Dickey-Fuller Test
data: FD_training

Dickey-Fuller = -2.0349, Lag order = 14, p-value = 0.5635
alternative hypothesis: stationary

> adf . test(na.omi t(po_logrt))
Augnented Dickey-Fuller Test

data: na.onitCpo_logrt)
Dickey-Fuller = -15.268, Lag order = 14, p-value = 0.01
alternative hypothesis: stationary

Warning message
In adf.test(na.omit(po_logrt)) : p-value smaller than printed p-value
> adf . test(na.omi t(sp_logrt))

Augnented Dickey-Fuller Test

data: na.omit(sp_logrt)
Dickey-Fuller = -15.387, Lag order = 14, p-value = .01
alternative hypothesis: stationary

Warning message
In adf.test(na.omitCsp_logrt)) : p-value smaller than printed p-value
> adf . test(na.omi t(Fd_logrt))

Augnented Dickey-Fuller Test
data: ma.omitCfd_logrt)
Dickey-Fuller = -13.925, Lag order = 14, p-value = 0.01

alternative hypothesis: stationary

Warning message
In adf.test(na.omit(fd_logrt)) : p-value smaller than printed p-value

Figure 2.5: ADF Test results: daily closing price v.s. log return

An alternative to the ADF test is known as the Phillips- Perron test (Perron, 1988).
PP tests show the same conclusion as the ADF tests, therefore their results are omitted

for simplicity reasons.

2.1.3 ACF and PACF

Above conclusion can be easily and conveniently examined by ACF and PACF plots.
A correlation of a variable with itself at different times is known as autocorrelation or
serial correlation. If a time series model is second-order stationary, we can define an

autocovariance function (ACVF), vy, as a function of its lag k:

Vi = E[(xt = ) (e — 1)1

Correspondingly, the lag k auto-correlation function(ACF), v, is defined as

or =2

We examine the auto-correlation function of both the asset prices and returns. The

correlogram for three asset processes are shown in figure 2.6, figure 2.7 and figure 2.8.



2.1. STATIONARITY
ACF plot of PO Price

AR

0.8

0.4+

ACF

0.04

PACF
g

1.004

0751
050

ACF

0.001 e s A ]

PACF
g g
)
)
]
)
)
1
L
)
]
o
)
-
)
]
i
]
]
]
)
-
-
]
1
]
)
)
)
)
)
)
]
)
)
-
)
]
)
R,
)
£
-
]

Figure 2.6: Correlogram for POAGX: log return v.s.daily closing price
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ACF plot of FD Log Return
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Figure 2.8: Correlogram for FDFAX: log return v.s.daily closing price

We see that for all of the three asset prices, their ACFs do not want to disappear
after a specific time points. According to Metcalfe and Cowpertwait, , a gradual
decay from a high serial correlation is a notable feature of a random walk series. In
addition, if a series follows a random walk, the differenced series will be white noise.
These two arguments strengthen our believe that the close price are random works
while the log returns are stationary, looking similar to a while noise process(with some

special pattern in variance).

2.2 INDEPENDENCE

In this section, we introduce two statistical tests for Independence checking.

Before formally introduce two statistical tests for Independence checking, we first
examine weather it is necessary to conduct the Independence test. In other words, we
are to address the question that should one care about the Independence of time series

as we have already have the powerful auto-correlation tests.



2.2. INDEPENDENCE 15

2.2.0.1 Importance of Independence check

Time series are regarded as independent if there is absolutely no relationship between
the current variable and past variables. Yet, zero correlation does not imply inde-
pendence. and one do want to check for the Independence of time series even little

correlation has been tested to possess in the data sample.

Here are two examples illustrate the ideas above. Consider the following two
simulated data structures. The first vector is constructed as i.i.d while the second is
dependent. Both of the auto-corregrams shown in figure 2.9 reveals zero correlation
among successive lags, suggesting no auto-correlation exsit for two vectors. but BDF
tests show different results on these two: for series x, the p value is high, therefore we
do not reject of the null hypothesis that the data is i.i.d at 1% significance level, while
for series y, we see that p-value are not different from zero, therefore we reject the null

hypothesis and suspect dependence among lags.
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Figure 2.9: ACF ILLUSTRATION Example
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> bds.‘test(x,m—3)
BDS Test
data: x
Embedding dimension = 2 3
Epsilon for close points = @.5258 1.8516 1.5774 2.1833

Standard Normal =
[ @0.5258 ] [ 1.8516 ] [ 1.5774 ] [ 2.1833 ]
Lz2] 1.4525 1.17@2 2.8147 1.8471
L3] 9.1622 1.0470 1.6528 1.2591
p-value =
[ @0.5258 ] [ 1.8516 ] [ 1.5774 ] [ 2.1833 ]
9.1464 8.2419 0.8439 0.8995

£zl
[31] 0.8712 8.2951 0.0984 0.2080

= bds.test(y) # not independent
BOS Test
data: vy
Embedding dimension = Z 3
Epsilon for close poinks = ©.1786 @.3573 0.5350 8.7145
Standard Normal =
[0.1786 ] [ ©.3573 ] [ 0.5359 ] [ ©.7145 ]

[ 2] 547.6341 123.2873 2.8739 -9.3362
[3] 743.4724 115.3152 -2.1764 -7.9260

p-value =

[0.1786 ] [ ©.3573 ] [ 0.5359 ] [ ©.7145 ]
£zl ] a 8.0379 a
[3] 0 ] 9.0295 ]

Figure 2.10: BDS Test Illustration Example

Once the importance of Independence is recognized, we now introduce some of

the most widely used tests for Independence check and their limitations.

2.2.1 BDF Test

The Brock- Dechert-Scheinkman test (a.k.a. BDS test) of serial independence (Brock,

Dechert Scheinkman, 1996) checks whether a sequence of random variables are i.i.d.

Let Y/ = (Y4, Vis1s---» Vegn1)- We have

V' = (91,92 Vn),
V) = (Y2, 93 Yns1),

Yilz—n = (nywnynJrl: cee :yT);

Define a correlation integral with dimension # and distance € as:

_ 2 n_.n
CT(YI,G) - T—n+l ;Ie(yt Ys )

where I.(y;,v?) = 1 if the maximal norm y;' —y? < € and O otherwise. If y, are

indeed i.i.d., then Y;" should exhibit no pattern in the n-dimensional space, so that

C(n,e) = C(1,€)". The asymptotic null distribution of the BDS test is N (0, 1). For

detailed description of BDS test, one may refer to (Kuan,

To summarize, the structure of BDS test is:

) for more information.

H,: the test statistics follow N (0, 1), in other words, the underlying y;s are

iid.
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Hy: series y,;s are noti.i.d.

Trapletti’s tseries package for R provides a BDS test function
for financial time series. The command bds.test(x, m) computes the BDS statistic on a
time series object x for m dimensions, and € = 0.50,1.00,1.50 and 2.00 by default.
The function outputs two m by 4 matrices. The first matrix, labelled as ’Standard
Normal’, contains the normalized BDS statistics for each embedding dimension and
each epsilon value, whereas the second matrix, labelled ’p-value’, contains the two
sided p-values.

The BDS testing results for the three log return series reveals that all of them,

although zero correlation with lags, are not independent with their history at different

lags, as all the p values in the second matrix are around 0.

> bds. test(na.onitCpo_logrt),me8) > bds. test(na.onit(sp_logrt),m-8) > bds. test(na.onit(Fd_l0gre),m=8)
805 Test. 805 Test. 805 Test

na.onitCpo_Logrt) dota: na.onitCsp_logrt)

2345678 2345678

s = 0.0069 0.0138 0.6208 0.0277 s - 0.0061 0.0123 0.0184 0.0246 0090 0.0134 0.0179

Standard N
Co

Co.0179]
698 11.6505  13.5361  16.3541
14,2858 16,2015 180725  20.4195
17.9320 19.391 20626  22.1930
2115460 219402 223423 23.1850
52831 202025 236715 238042
29.7810 268152 24.93% 242961
35.7720 207558  26.2804  24.7982

orral -
0063 ] [ 0.0138 ] [ 0.0208 ] [ 0.0277 ]
97012 114172 13.4971  15.556
13,5488 153228 17.5862  20.1066
17.2000  18.2803 20,0077  22.4509
23,9896
27151 22798  23.3%67  25.0104
25,2794 24.9587 207479 25.9259
278812 27.1848 26,0619  26.6498

10001231 [ 0.018 ] [ 0.0246

12.2: 12,9212 14,7253
16,9978  18.0991 183144 193602
2.509 22,2921 213868 217353

50.9956  38.3730  30.1205  27.0529

[ 0.0060 [ 0.0277 Comzs ] Co.o ] o020 [ 0.0045 ] [ 0.009 ] [ 0.0134 ] [ 0.0179
o

1 1 1
° e e
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Figure 2.11: BDS test results for three log return series

While the BDS test does have an advantage that it is robust to random variables that
do not possess high-order moments, it usually needs a large sample to ensure proper
performance (Kuan, ). As a result, test statistics for dimensions larger than 5 are
usually believed to be less robust. (Belaire-Franch and Contreras, ) Although we
have choosen up to 8 dimenstions in this project, all of them show significant evidence
against the null hypothesis. Moreover, it has been found that the BDS test has low

power against various forms of nonlinearity.

2.2.2  Variance Ratio Test

Lo and MacKinlay (Lo and MacKinlay, ) variance ratio tests are based on the
property that, if returns are i.i.d., the variance of the k-period return should be approxi-

mately k times of the variance of the one-period return. Mathematically, this variance
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ratio is given by

ﬁ Yk TWr + Y1+ Yr2+ o+ Ypk1 —kf)2 )

VR(k) =
" %ZlT(%—ﬁ)

where fi = T-1 Zthl v;. Lo and MacKinlay showed that, if the returns are i.i.d.,

then the test statistic
M; (k) = (VR(k) = 1)®@(k)~"/2

follows the standard normal distribution asymptotically, under the null hypothesis that
VR(k) = 1. A later modified version! of LoMac model proposed an alternative test
statistic that is robust against the presence of conditional heteroscedasticity, given by

k-1

My (k) = (VR()=1)[) [

1

2(k—j

-1/2
0l

-

In other words, the Lo Mac model states that if the sample statistics computed
from the sample is not too far away from 0 in terms of standard error, then the series
are believed to be i.i.d. with confidence.

We conduct the Lo Mac models on the three return series for various holding period
k. While the 1% and 5% two-tail critical Z values are 2.576 and 1.960 respectively,
we observe that the test statistics are all negative and significant, which helps us reach

the same conclusion of dependence among return series as those from BDS tests.

POAGX S&P FDFAX

M1 M2 M1 M2 M1 M2
k=2 -0.4712995 -0.2930923 | k=2 -5.6270136 -2.8633696 | k=2 -4.6956697 -2.3534105
k=S -1.56182@3 -0.9000867 k=5 -5.3735393 -2.4967356 | k=5 -4.5962537 -2.1046475
k=10 | -2.1781496 -1.2417899 k=10 -4.8549638 -2.2033788 | k=10 -3.8321323 -1.7480214
k=30 | -1.7252435 -1.0222173 | k=30 -2.88@3218 -1.3133448 | k=30 -2.1505988 -1.0131322
k=25@ -0.5022234 -0.3679080 k=250 -0.6421867 -0.3766211 | k=250 -0@.8155726 -0.5297342
k=500 -0.5477778 -0.4449060 k=500 -0.5932454 -0.4000879 | k=500 -1.0437452 -0.7806342

Figure 2.12: Lo Mac Test for Independence

nterested person may refer to the orginal paper for more details
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2.3 NORMALITY CHECK

In addition to the stationary and independent property, we are also interested in the
normality in our time series. There are usually two ways for one to check the normality
for time series, graphical visualization of density plots and normality statistical tests.

One can also use QQ-plot for the same purpose.

2.3.1 Density Plots

The density plots of the three log returns series during the entire training periods are
shown in figure 2.13, with the red dotted line companioned as the theoretical normal
density plot with mean as the sample mean and standard deviation as the sample
estimated standard deviation. We see that, in general, the returns appear not to be
identical to their standard normal counterparts: although with the same centering

location at zero, their shapes are different and with fat tail performance.

2.3.1.1 Normality Statistical Tests

We can corroborate these empirical density distribution plots with one of many statis-
tical test for the null hypothesis that a sample time series Ry, ..., R,, of returns come
from a normally distributed population. One popular such tests is Shapiro-Wilk. If the
p-value of obtaining the Shapiro-Wilk test computes is less than a given confidence
level then the null hypothesis should be rejected (i.e. the data does not come from a

normal distributed population).

The test results shown in figure 2.14 shows that the p-values for the test statistics
for three returns are all around zero, we reject the null hypotheses that these returns are
drawn from a normal distribution. Such conclusion is supported by another famous
test, known as Kolmogorov-Smirnov normality test. The results leads us to the same

conclusion that the log returns do not fit the normal distributions exactly.
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Figure 2.13: Density plots for three log returns

> shapiro.test(as.vector(ri))
Shapiro-Wilk normality test

data: as.vector(rl)
W = 8.94517, p-value < 2.2e-16

> shapiro.test(as.vector(r2))
Shapiro-Wilk normality test

data: as.vector(r2)
W = 0.87597, p-value < 2.Ze-16

> shapiro.test(as.vector(r3))
Shapiro-Wilk normality test

data: as.vector(r3)
W = 0.904083, p-value < 2.Ze-16

Figure 2.14: Shapiro-Wilk’s test for normality Results for three log return series
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POAGX

S&P

FDFAX

ksnormTest(as.vector(rl))

itle:
One-sample Kolmogorov-Smirnov test

est Results:

STATISTIC:
D: 0.4776

P VALUE:
Alternative Two-Sided: < 2.2e-16
Alternative Less: < 2.2e-16
Alternative Greater: < 2.2e-16

> ksnormTest(as.vector(r2))

Title:
One-sample Kolmogorov-Smirnov test

Test Results:
STATISTIC:
D: 0.4789
P VALUE:
Alternative Two-Sided: < 2.2e-16
Alternative Less: < 2.2e-16
Alternative Greater: < 2.2e-16

> ksnormTest(as.vector(r3))

Title:
One-sample Kolmogorov-Smirnov test

Test Results:
STATISTIC:
D: 0.434
P VALUE:
Alternative Two-Sided: < 2.2e-16
Alternative Less: < 2.2e-16
Alternative Greater: < 2.Ze-16

21

Figure 2.15: Kolmogorov-Smirnov normality test Results for three log return series

Therefore, both of the tools in normality test suggest the returns are not normally

distributed, it is also justified in the QQ plots shown in figure 2.16. The deviation

away from the golden line signals the disform to normality.

One reason that the distribution would not be exactly normal is because of volatility

clustering: some periods have higher volatility than others, we will discover the

hereteroscadesity in the following section in more depth.

To summarize, we have establish the following observations of our three asset

processes:

1. Asset prices are not stationary with obvious trends across the training period

2. While the first moment of returns are stationary, they do behave with variance

clustering phenomenon;

3. returns are nor exactly normal.

Therefore, we will have to use appropriate models to capture these patterns in the

following chapter.
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Figure 2.16: Density plots for three log returns
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TiME SERIES MODELLING

The first observation at the end of last chapter suggests an ARIMA model to capture
the correlation among lags (i.e. trends feature in returns), while the remaining two

observations suggest a model to capture the serial correlation in variance.

3.1 AR,MA, ARMA AND ARIMA MODELS

3.1.1 ARIMA

A time series {X;}; is said to be an ARIMA process if, when differentiated finitely
many times, it becomes an ARMA time series. More precisely, one says that {X;}; is
an ARIMA(p, d, q) if its becomes an ARMA(p, q) after d differences. Mathematically,
ARIMA model states that:

X ~ ARIMA(p,d,q) & VX ~ ARMA(p, q)

where V = 1 — B is the first difference operator.

23
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3.1.2 ARMA

A time series {X;}, is said to be an auto-regressivemoving average time series of order

pandq (i.e. X ~ ARMA(p, q)) if there exists a white noise {W,}; such that:
Xy =1 X1 == by X p = Wy Oy Wy g+ + 0, W,

for some real numbers (pl,...,(j)p, and 91,...,6q.

3.1.3 AR

A mean-zero time series {X;}; is said to be auto-regressive of order p (with respect to

a white noise {W,},) if:
Xi=P1Xi 1+ 02Xy 2+ 0p Xy + Wy

for some set of real numbers ¢y,...,¢,. More generally, we say that {X;}; is auto-
regressive of order p if there exists a number py such that the {X; — y;}; is auto-

regressive of order p in the sense given above.

314 MA

A time series {X;}; is said to be a moving average time series of order q (with respect

to a white noise{W,},) if:
Xt - Wt + let—l + -0+ qut—q

for some real numbers 61, ...,6,. In such a case we use the notation X ~ MA(q).
From the very definition of the MA process, one could figure out that the random

variables X, and X; are independent because of the disjoint white noise term. Graph-

ically, an MA process is often characterized by the vanishing after lags greater than q

in ACF plots.

3.2 FINDING THE ORDER OF P AND Q

The determination of the order of the model, (p and q to be more precise) has always
been of interest. In some sense, one can interpret AR as a special category of linear
regression models, therefore the parsimonious balance decision criteria for model

comparison also suits for the model choice in ARIMA.
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Criteria such as AIC and BIC assess the trade of between the number of parameters
in the model(model accuracy) against efficiency(model simplicity and computational
power). Yet, for time series particularly, ACF and PACF plots provide a good suggestion
about the order of parameters to be used in the model, and are considered as more

powerful tools in some cases. (Carmona, )

3.3 ARIMA FOR RETURN SERIES

In this section, we are going to fit in the ARIMA model for all of the three processes.
ACF and PACF plots provide a good suggestion about the order of parameters to be
used in the model, we can easily find the model by auto.arima functions in R. The

results with parameters and information criteria computes are shown in figure 3.1.

> arima.rl
Series: rl
ARIMACZ,@,8) with non-zero mean

Coefficients:
arl arZz  mean
-@.@081 -0.0306 Se-04
s.e. 9.0181 ©.0181 Ze-04

sigma*rZ estimated as ©.0001916: log likelihood=8698.93
AIC=-17389.86 AICc=-17389.85 BIC=-17365.78

= arima.r

Series: r2

ARIMA(®,0,2) with zero mean

Coefficients:
mal maZ
-@.1061 -0.0550
s.e. 0.2182 ©.0188

sigmarZ estimated as ©.00014%2: log likelihood=9@81.87
AIC=-18156.14 AICc=-18156.13 BIC=-18138.@8
> arima.r3
Series: r3
ARIMA(Z,0,1) with non-zero mean
Coefficients:
arl arz mal  mean

-0.4820 -0.1071 0.3934 4e-04
s.e. 9.1392 ©0.0194 0.1400 le-@4
sigma*rZ estimated as 7.933e-05: log likelihood=18@40.85
AIC=-2007@.09 AICc=-Z0070.87 BIC=-20039.99

Figure 3.1: Arima models for three training returns

The return of POAGX is AR(2), and MA(2) for S&P and ARMA(2,1) for FDFAX
respectively. We can compare the order selection criteria shown in figure 3.2 with the
instructions from ACF and PACF plots figure 2.6, figure 2.7 and figure 2.8 . Yet, the
ACF plots and PACF plots are far from simulated examples that it is not easy to read

the order from the cut offs or vanishings directly.
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Conditional Mean Model ACF PACF
AR(p) Tails off gradually | Cuts off after p lags
MA(g) Cuts off after q lags | Tails off gradually
ARMA(p,q) Tails off gradually | Tails off gradually

Figure 3.2: ACF and PACEF signal for order

After fitting the model, we also compare and contrast the ACF and PACF of the

original series with the residual series.

ACF plot of PO Log Return ACF plot of PO AR(2) Residuals

Figure 3.3: Correlogram for POAGX: log return v.s.Residuals

ACF plot of SP Log Return ACF plot of SP MA(2) Residuals
1004 1004

Figure 3.4: Correlogram for S&P: log return v.s.Residuals

ACF plot of FD Log Return ACF plot of FD ARMA(2,1) Residuals
004 04
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Figure 3.5: Correlogram for FDFAX: log return v.s.Residuals

A look at the above plots for residuals seem to indicate that the auto-correlation

function of these raw residuals is not much different from the auto-correlation of a
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white noise, suggesting that our ARIMA models perform good to capture the auto-
correlation among lags to reveal the trend pattern. Yet, we do know from the serial

plots before that conditional heteroskedasticity exist, which we also need to address.

3.4 GARCH MODEL FOR VOLATILITIES

3.4.1 Motivation

Time series plot of the residuals of the ARIMA model as fitted to the log returns com-
puted from the asset returns (left) and their Q-Q plot against the Gaussian distribution

(right) are shown belown which motivates us to incorporate the GARCH model.

Plot of POAGX Log returns Time Series (1 - 3040)
Normal Q-Q Plot

Closing Values

8 y s
& o o Theoretical Quantiles
Year

Figure 3.6: Time series plot of the residuals and their Q-Q plot (right) from POAGX

Plot of S&P Log returns Time Series (1 - 3040)
Normal Q-Q Plot

Closing Values

Py 8 s
& 5 5 Theoretical Quantiles
Year

Figure 3.7: Time series plot of the residuals and their Q-Q plot (right) from S&P

Plot of FDFAX Log returns Time Series (1 - 3040)
Normal Q-Q Plot

Sample Quantiles
-0.05 0.00 0.05
\.

-3 -2 -1 0 1 2 3

& ¢ o
¢ < < Theoretical Quantiles
Year

Figure 3.8: Time series plot of the residuals and their Q-Q plot (right) from FDFAX
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From the left panel, it is clear that too many measurements end up several standard
deviation away from the mean, especially around time 2008, during the financial crisis
period. The marginal distribution of these residuals is presumably not normal. This
is confirmed by the normal Q-Q plot of these residuals reproduced in the right pane
of these figures, which shows that the distribution of the residuals has heavy tails for
all of the three asset processes. So even if the ARIMA model was able to capture
the serial correlation contained in the log returns, we had no confidence about the

independence in the residuals.

If the ARIMA models were able to capture the patterns entirely from the return
process, then the residuals in these models should behave like white noise. Since
squares of random variables are independent whenever the original random variables
are independent, then the squares of the residuals should also behave randomly. The
plot of the auto-correlation function of the squares of the time series of residuals
which we reproduce in Fig. 3.14 confirm the dependincies remaining in the residuals.
Astonishingly, the autocorrelgram of the squared error terms are highly correlated

with each other.
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Series arima.r1$residuals[-(1:2)]*2

ACF

00 02 04 06 08 10

ACF

0.0 02 04 06 08 10

ACF

0.0 02 04 06 08 10

Figure 3.9: ACF plot of the residuals square

3.4.2 Models: ARCH and GARCH

An autoregressive model for the variance process, (ARCH model) accounts for the
conditional changes in the variance. Mathematically, a series {e;}; is defined to be

first-order autoregressive conditional heteroskedastic, denoted as ARCH(1), if

€t = wt\’ao + aletz_l

where w; is white noise with zero mean and unit variance. Taking a square of the

above equation, one get the calculated variance:

Var(e;) = E[ef]

=ag+ai;Var(e;_q)
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If we compare ARCH (1) with the AR(1) process x; = &g + a1 X;_1 + w;, we see
that the variance of an ARCH(1) process behaves just like an AR(1) model. Hence, in
model fitting, a decay in the autocorrelations of the squared residuals indicates a good
signal to use an ARCH model.

The ARCH (1) model, or more generally, ARCH (p) model can be extended to
the generalised ARCH model, denoted as GARCH (g, p), which has the ARCH (p)
model as the special case ARCH (O, p). A series €; is GARCH(q, p) if

€t Zwt\/h—t

where

p q
E 2 E

ht =ap+ a;e, ;+ ﬁ]ht—]
i=1 j=1

Reflecting on the ideas behind the model, we see that ARCH and GARCH models
are to solve the problem of un-random variance. In order to forecast the return volatily,
which is usually of the interest of quanlitative financial practitioners, one of the best
estimates in prior to these models may be the naive rolling window sample variance
to forecast the upcoming variance according to CLT. Yet, such estimates allocate
weight equally among the historical occurances. Intuitively, one may wish to put more
weight in the more recent occurrence compared with the far previous history. ARCH
and GARCH are the models to realize that, providing quantitatively-sound weight
schemes for historical variance. Looking closely at the GARCH model, it says that
the forecast for the next instantaneous variance would be a weighted sum of historical
randomness(long term variance for up to p periods plus the instantaneous variance for

q periods(Financier, ).

3.4.3 GARCH Model on Assets

The results after we fit in GARCH models are reproduced in Fig. 3.12. These plots
of the auto-correlation functions of the residuals and squared residuals of the fitted
GARCH(1,1) model show that GARCH were able to practically completely removed

the serial correlation existed in ARIMA model residuals.
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Series na.omit(garch1$residuals) Series na.omit(garch1$residuals*2)
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Figure 3.10: POAGX: ACF plots of residuals and residuals square from GARCH(1,1)
models
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Figure 3.11: S&P: ACF plots of residuals and residuals square from GARCH(1,1)
models
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Figure 3.12: FDFAX: ACF plots of residuals and residuals square from GARCH(1,1)
models

As one of the most distinctive feature of the GARCH model is to distinguish
unconditional variance and produce the conditional variance, it is insightful to look
at the model estimated instantaneous conditional variance form historical data at
each time point in the dark line. In figure 3.13, the instantaneous conditional sigma
estimated in the fitting of a GARCH(1,1) model to the ARMA residuals from the
POAGX returns is shown in dark line. In companion with it, is a rolling standard
deviation estimate with weight equally distributed to the previous 60 past volatility
in red line. We see in general conherence in these two estimates, while the GARCH

estimate gives more sharp and quick responds in corresponding period, while the
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rolling average is smoother as expected. In the down panal shows the orginal log
return series as numerical vector (therefore, the index is not time perspecive) with 2
conditional standard deviation superimposed. GARCH is powerful and sophisicated

to predict the confidence interval for the true sigma with more than 90% confidence.

Time Series Plot of Conditional Estimate

0.02 0.03 004
!

fitt @sigma.t

0.01
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0 500 1000 1500 2000 2500 3000

Index

Series with 2 Conditional SD Superimposed

X
-0.05 0.00 0.05 0.10

| I I I I | I
o] 500 1000 1500 2000 2500 3000

Index

Figure 3.13: Conditional standard deviation as estimated in the fitting of a GARCH(1,1)
model to the ARMA residuals from the POAGX returns

To visualize the quality of the fit of the GARCH model, we draw the scatter plot
3.14 of the fitted values against the actual values to which the GARCH model was
fitted. The fact that the points are found around a straight lines for all of the three

assets is a good indication of the quality of the fit.
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Scatterplot of GARCH fitted values against PO ARMA residu:
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Figure 3.14: ACF plot of the residuals square

For simplicity reasons, the same set of plots are not included in this thesis, as

evidence are similar to support the power of GARCH model.

3.5 FORECASTING

3.5.1 Hybrid ARIMA and GARCH model

As we have illustrated, returns will often possess an ARMA (mean) structure with
GARCH (volatility) errors.
The regression equation for a simple AR-GARCH model is

Ty = Wy + Or€y.
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where the mean term p; is an ARMA process

Kt :ﬂ+¢1rt—l +¢2rt—2+"'+91Wt_1 +62Wt_2+... .

and o; has GARCH behavior:

2 _ 2 2

For example, referring to the model output 3.15, the the hybrid model for the first

assets, POAGX are:

Coefficient(s):
mu

B.0907332601 ©.0134686061

5td. Errors:
based on Hessian

Error Analysis:

Estimate
mu 0.0007832601
arl 0.0134686001
arz -0.0378846939

omega  @.0000@38865
alphal ©.887186865@
betal 0.B887188628

(== I~ I I o

arl

Std. Error

.BBB1248765
8192306396
.@189@71838
. DPBORAB3R3
8187955175
.9136@49438

arz

-0.8378046939

t value
4,836
@.700
-1.999
4.636
§.076

B65.323

omega

alphal

0.0200@3886> ©.9871803650

Pri=1tl)
2.000054409126@24391
@.4837

@.8456
@.000283549576855306
@.000000000000000666
< 0.9200002000020002

L 2]

L 2]

*kE

L 2]

Figure 3.15: Hybrid model for POAGX returns

Pt = Pt Qi1 + Pty + +os€;

2

Ut:

He =

2 2
w+ayr_+p1o .

o7 =0.00000+0.08719r% | +0.8887107

0.00078 + 0.01347r,_; +0.03780r,_, + €,0;

betal
B.8887108620

With the models identified and parameters estimated, now we are at the point of

forecasting. The procedures are as follows, we first estimate the mean returns for the

coming period, according to the ARMA model; in parallel, we have our volatility

forecast from GARCH model and from the fitted value from ARMA forecast:
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22 A A2 A2
0{,1 =w+ary + oy

a2

_ a2
T =

Ot

N s 2 h a2
O¢ip = w+art+1 +ﬁ6t+1
A2 A2
Try2 = 0¢ip

With this rational, we have shown the prediction result of POAGX returns in figure
3.16 with the realized return value in transparent red, the 30 day ahead forecast in red
in the right tail of the index, with upper and lower confidence interval bounded, we

see that the boundary is able to cover the realizations in general.

Prediction with confidence intervals

S | -
(=]
o | |
< 1 l 1 i
w: 2 I '
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Index

Figure 3.16: ARMA-GARCH Prediciton for POAGX returns
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CONCLUSION

4.1 SUMMARY

In this project, we investigate the time series theories and models on three asset
processes. We examine three different assets including a stock index, a diversified
and un-diversified portfolio mutual funds repectively. We examine various ideas in
time series and check the staionarity, independnece, correlation and normality. After
that, we observe the data patterns and fit in different models for trends and also fit in
GARCH models for capturing the variance variability.

From a hands-on point of view, we appreciate the concepts and models developed
in time-series arena. We see that, time series models, in general, are able to capture a
large part of the pattern inhibited in the data structure. Especially with GARCH model
for capturing the variance clustering phenomenoun in usual financial data series.

We acknowledge the fact that the time is limited for us to extend further to consider
and examine the long term-memories of financial data series by polynomial models
and fractionally integrated models. And we may include cross-sectional analyses such

as incorporating factor models in our three assets in the future.
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